Primordial Magnetic Fields and CMB Anomalies

(work in progress)

Rahima Mokeddem and W.S. Hipólito-Ricaldi

PPGCosmo – COSMO-UFES
Departamento de Ciências Naturais

Vitória, Março de 2020
Outline

1. CMB anomalies.
2. Possible causes.
3. Effects of Primordial Magnetic Fields on CMB.
4. Preliminary results.
5. Conclusions.
Old cosmological Models

Ancient Egypt

Ancient Middle East

1998-2020
\(\Lambda\)CDM model (?)

Dark Ages (and Kansas today)

Ancient South Asia
Tensions in the ΛCDM model

- high- vs low-z $\sigma_8-\Omega_m$ constraints: clusters, weak lensing
- CMB anomalies: low-ℓ, hem. anisotropies, ...
- small scale CDM problems: cusps, too big to...
- high- vs low-z H_0 measurements
1. CMB Anomalies

- Several unexpected features were observed in CMB data at large angular scales (WMAP, Planck, COBE).

Low variance and lack of correlation on large angular scales

- Variance, skewness and kurtosis (Planck)

- < 0.5 % p-value

\[
C(\theta) = \frac{1}{4\pi} \sum_\ell (2\ell + 1)C_\ell P_\ell(\cos \theta).
\]

Planck2018 (1906.02552)
Planarity and Alignment of the lowest multipole moments.

- In LCDM temperature anisotropies have random phases

- In harmonic space, orientations and shapes of the multipole moments are uncorrelated.

- The octupole is somewhat planar, $p < 5\%$.

- The normal to the quadrupole plane is aligned to the normal to the octupole plane, $p < 1.5\%$

- Quadrupole and octupole plane is orthogonal to the Ecliptic plane, $2\% < p < 4\%$
Hemispherical power asymmetry

- Preference for odd parity modes (p-value < 1%), large cloud spot in the southern hemisphere (p-value < 1.8%)

\[(l, b) = (230^\circ, -16^\circ) \pm 24^\circ\]

- p-value < 1%
- Do the anomalies are independent? Maybe 3 of them \(p \sim 10^{-5} \)

<table>
<thead>
<tr>
<th>feature</th>
<th>p-value</th>
<th>data</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>in angular space</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>low variance (N_{\text{side}} = 16)</td>
<td>(\leq 0.5%)</td>
<td>Planck 15</td>
<td>Tab. 12 [7]</td>
</tr>
<tr>
<td>2-pt correlation (\chi^2(\theta > 60^\circ))</td>
<td>(\leq 3.2%)</td>
<td>Planck 15</td>
<td>Tab. 14 [7]</td>
</tr>
<tr>
<td>2-pt correlation (S_{1/2})</td>
<td>(\leq 0.5%)</td>
<td>Planck 15</td>
<td>Tab. 13 [7]</td>
</tr>
<tr>
<td>2-pt correlation (S_{1/2})</td>
<td>(\leq 0.3%)</td>
<td>Planck 13 & WMAP 9yr</td>
<td>Tab. 2 [31]</td>
</tr>
<tr>
<td>2-pt correlation (S_{1/2}) (larger masks)</td>
<td>(\leq 0.1%)</td>
<td>Planck 13</td>
<td>Tab. 2 [31]</td>
</tr>
<tr>
<td>hemispherical variance asymmetry</td>
<td>(\leq 0.1%)</td>
<td>WMAP 9yr</td>
<td>[31, 32]</td>
</tr>
<tr>
<td>cold spot</td>
<td>(\leq 1.0%)</td>
<td>Planck 15</td>
<td>Tab. 20 [7]</td>
</tr>
<tr>
<td>in harmonic space</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>quadrupole-octopole alignment</td>
<td>(\leq 0.5%)</td>
<td>Planck 13</td>
<td>Tab. 7 [33]</td>
</tr>
<tr>
<td>(\ell = 1, 2, 3) alignment</td>
<td>(\leq 0.2%)</td>
<td>Planck 13</td>
<td>Tab. 7 [33]</td>
</tr>
<tr>
<td>odd parity preference (\ell_{\text{max}} = 28)</td>
<td>(< 0.3%)</td>
<td>Planck 15</td>
<td>Fig. 20 [7]</td>
</tr>
<tr>
<td>odd parity preference (\ell_{\text{max}} < 50) (LEE)</td>
<td>(< 2%)</td>
<td>Planck 15</td>
<td>Text [7]</td>
</tr>
<tr>
<td>dipolar modulation for (\ell = 2 - 67)</td>
<td>(\leq 1%)</td>
<td>Planck 15</td>
<td>Text [7]</td>
</tr>
</tbody>
</table>
Breaking Statistical Isotropy

- In LCDM, CMB is supposed to be Gaussian and Statistically isotropic. i.e multipolar coefficients are statistically independent (correlation matrix is diagonal)

\[
\langle a_{\ell m} a_{\ell' m'}^* \rangle = \delta_{\ell \ell'} \delta_{m m'} C_\ell
\]

- All information is in the power spectrum and 2PCF.

\[
P(a) = \frac{1}{\sqrt{(2\pi)^3 (l_{\text{max}}+1)^2 \det(M)}} e^{-\frac{1}{2} a^\dagger M^{-1} a}
\]

\[
a = \begin{pmatrix}
a^T_{\ell m} \\
a^E_{\ell m} \\
a^B_{\ell m}
\end{pmatrix}
\]

- Anomalies are related to Violation of Statistical Isotropy (correlation matrix is not diagonal anymore)

- Are necessary more estimators.
2. Possible Causes for Violation of Statistical Isotropy

- **Residual Foregrounds:**
 - Solar System emissions
 - Milky Way emissions
 - Contamination by Sunyaev-Zeldovich effect

- **Cosmological:**
 - Kinetic effects (Earth's motion with respect to CMB)
 - Local large scale structure
 - Broken scale invariance
 - Broken isotropy in Early Universe
 - Topology
 - Primordial Magnetic Fields....
Why Primordial Magnetic Fields?

- There is observational evidence for the presence of large-scale intergalactic magnetic fields, within clusters of galaxies (μG).

- Amplification of Primordial Magnetic Fields (nG) appeared in early times?

- Assumption: There exists a primordial homogeneous magnetic field (nG)

- Recombination epoch
3. Effects of the Magnetic Fields in CMB

- Speed of sound and Acoustic Oscillations:
 \[c_s^2 \rightarrow c_s^2 + v_A^2 \cos^2 \theta \]
 \[v_A^2 = \frac{B_0^2}{4\pi(\rho + p)} \]

- Induced vector perturbations and Sachs Wolfe effect corrections
 \[\frac{\delta T}{T} B_{\hat{n}, k} \approx \hat{n} \cdot \vec{v}_0 \, v_A \, k \, t_{\text{dec}} \, \cos \theta. \]

- In harmonic space
 \[\langle a_{\ell m} a_{\ell' m'}^* \rangle = \langle a_{\ell m} a_{\ell' m'}^* \rangle_{\Lambda \text{CDM}} + \langle a_{\ell m} a_{\ell' m'}^* \rangle_{B} \]
 \[\langle a_{\ell m} a_{\ell' m'}^* \rangle_{\Lambda \text{CDM}} = C_{\ell}^{\Lambda \text{CDM}} \delta_{mm'} \delta_{\ell\ell'} \]
 \[\langle a_{\ell m} a_{\ell' m'}^* \rangle_{B} = \delta_{mm'} [\delta_{\ell\ell'} C_{\ell m}^{B} + (\delta_{\ell+1, \ell' -1} + \delta_{\ell-1, \ell' +1}) D_{\ell m}^{B}] , \]

 \[C_{\ell m}^{B} = 27.12 \times 10^{-16} \left(\frac{B_0}{1 \, nG} \right)^4 \times \frac{2\ell^4 + 4\ell^3 - \ell^2 - 3\ell + 6m^2 - 2\ell m^2 - 2\ell^2 m^2}{(\ell + 2)(\ell + 1)\ell(\ell - 1)(2\ell - 1)(2\ell + 3)} \]

 \[D_{\ell m}^{B} = \frac{9\pi}{32} \frac{\sqrt{(\ell + m + 1)(\ell - m + 1)(\ell + m)(\ell - m)}}{2\ell^4 + 4\ell^3 - \ell^2 - 3\ell + 6m^2 - 2\ell m^2 - 2\ell^2 m^2} \frac{\sqrt{(2\ell - 1)(2\ell + 3)(\ell - 1)(\ell + 2)}}{(2\ell + 1)} \]
Simulated maps (Masked with U73)

- LCDM maps (Statistically isotropic)

\[P(a) = \frac{1}{\sqrt{(2\pi)^3(l_{\text{max}}+1)^2 \det(M)}} e^{-\frac{1}{2} a^\dagger M^{-1} a} \]

- Maps with B = 10 nG

Cholesky decomposition

\[M = L^\dagger L \]
\[a = L z \]

\[P(z) = \frac{1}{\sqrt{(2\pi)^3(l_{\text{max}}+1)^2 |\det(L)|}} e^{-\frac{1}{2} z^\dagger z} \]
Robustness of low variance (in context of LCDM, Planck 2018)

$N_{\text{side}} = 512$:

$N_{\text{side}} = 16$:

<table>
<thead>
<tr>
<th>Method</th>
<th>Variance</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander</td>
<td>0.031</td>
<td>0.246</td>
<td>0.311</td>
</tr>
<tr>
<td>Smica</td>
<td>0.031</td>
<td>0.26</td>
<td>0.256</td>
</tr>
<tr>
<td>SEVEM</td>
<td>0.031</td>
<td>0.304</td>
<td>0.304</td>
</tr>
<tr>
<td>NILC</td>
<td>0.025</td>
<td>0.261</td>
<td>0.22</td>
</tr>
</tbody>
</table>
Robustness of low variance (in context of LCDM)

\[-2\% < p < 4\%\]

\[\text{Consistent with Planck 2018}\]
What about CMB maps with Magnetic Fields?
Conclusions

- There are unexpected features in CMB highly unlikely in context of LCDM. At least 3 of them independents.

- Those unexpected features are caused by broken of statistical isotropy

- There are several scenarios to violation of the statistical isotropy

- Primordial magnetic fields changes the speed of sound and acoustic oscillations, they induced vector perturbations and Sachs Wolfe effect corrections.

- In harmonic space, a magnetic field will induce correlations between different multipolar moments.

- 2019 Planck data present a low variance, 2%<p<4%. this results are robust