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Introduction



Three unsolved problems

• What is the origin of dark energy?

• What is the origin of dark matter?

• Did Inflation really occur?
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Inflation solves some cosmological problems

• Horizon problem: small causally connected region inflates to large

region containing our Universe;

• Flatness problem: K/a2 → small, Ω→ 1;

BONUS

Density perturbations that give rise to large scale structure are generated

by inflation.

3



Inflation solves some cosmological problems

• Horizon problem: small causally connected region inflates to large

region containing our Universe;

• Flatness problem: K/a2 → small, Ω→ 1;

BONUS

Density perturbations that give rise to large scale structure are generated

by inflation.

3



Basic idea

From Einstein equations, the scale factor satisfies

ä

a
= −4πG

3
(1 + 3w)ρ where w =

P

ρ
. (1)

If w < −1/3, we have an accelerated expansion

ä > 0 . (2)

The amount of inflation is quantified by the number of e-folds

N = log

(
a

ai

)
. (3)

We require N & 60 to solve flatness and horizon problems!
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Rolling models of inflation

• Equation of motion

• Flat region

• V (φ) almost constant

• ρvac dominates energy

density

• a ≈ aie
Ht

• Decay of φ

• Particle production

• Reheating

φ̈+ 3Hφ̇+ Γφ̇+ V ′(φ) = 0

Figure 1: Example of an inflaton

potential. TASI Lectures on Inflation

[arXiv:0907.5424].
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Inflationary models and Observation
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Figure 2: Marginalized joint 68% and 95% CL regions for ns and r at

k = 0.002Mpc−1 from Planck alone and in combination with BK14 or BK14

plus BAO data, compared to the theoretical predictions of selected inflationary

models. Planck 2018 results. X. Constraints on inflation [arXiv:1807.06211].
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To summarise

Inflation

• slowly-rolling, self-interacting scalar field =⇒ initial spectrum

primordial perturbations due to vacuum fluctuations.

• Accelerated expansion =⇒ small scales vacuum fluctuations swept

up to large scales.

• Slowly varying expansion rate =⇒ almost scale invariant spectrum.
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To summarise

Inflation has some conceptual problems. Among them, we highlight

• The singularity problem, since even if inflation can be achieved by a

scalar field coupled to Einstein gravity, this inflationary universe is

past incomplete (Hawking and Penrose, 1970; Borde and Vilekin,

1994);

• The difficulty of constructing sufficiently flat potentials for inflation

(or quasi de Sitter) solutions in string theory or supergravity (Obied

et al., 2018, Agrawal et al., 2018);

• The trans-Planckian problem for fluctuations, if inflation lasts longer

than the minimal amount of time necessary to solve the initial

condition problems of Cosmology, then the wavelengths of

cosmological scales originate at sub-Planckian values (Martin and

Brandenberger, 2001);
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Collapsing models



We do not have a unique prescription for the initial conditions

of our Universe, so there is no reason to avoid considering other

mechanisms beyond inflation.

Alternative scenarios with primordial perturbations from quantum

vacuum fluctuations in a collapse phase preceding the Big Bang

• Non-stiff collapse: P < ρ with V > 0 (including scale-invariant

collapse);

• Pre-Big Bang collapse: P = ρ with V = 0 (blue tilted);

• Ekpyrotic collapse: P � ρ with V < 0 (ultra-stiff fast-roll collapse);
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FRW Collapse

L =
√−g

[
1

2κ2
R − 1

2
∂µϕ∂µϕ− V (ϕ)

]
and ds2 = −dt2 + a2(t)γijdx

idx j .

Scalar field with energy density and pressure

ρ =
1

2
ϕ̇2 + V (ϕ) , P =

1

2
ϕ̇2 − V (ϕ) , (4)

Equation of State

P = wρ . (5)

We choose V (ϕ) = V0e
−κλϕ =⇒ scaling solution with

a ∝ |t|p where p =
2

λ2
and λ2 = 3(1 + w) . (6)
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Dynamical System

Considering the dimensionless

variables

x =
κϕ̇√
6H

, y =
κ
√
±V√
3H

, (7)

The Friedmann constraint becomes

x2 ± y2 = 1 , (8)

and the dynamics is described by

x ′ = −3x(1− x2)± λ
√

3/2y2 ,

(9)

y ′ = xy(3x − λ
√

3/2) , (10)

Critical points

(A±) xA± = +1,−1 , yA = 0 ;

(11)

(B) xB =
λ√
6
, yB =

√
1− λ2

6
;

(12)

the solution (B) exists for

±(6− λ2) > 0.

• λ2 < 6: flat positive potential

• λ2 > 6: steep negative

potential

I.Heard and D.Wands [arXiv:0206085v1] 11
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1D Phase-space

Linear perturbations around the critical point (B) provide us

x ′ =

(
1

p
− 3

)
(x − xB) . (13)

Figure 3: Phase-space for flat positive potentials, λ2 < 6. Arrows indicate

evolution in cosmic time, t. Cosmology with positive and negative

exponential potentials [arXiv:0206085v1].
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1D Phase-space

In summary:

• Expanding universe (N → +∞):

� The scaling solution exists and is stable for a positive, flat potential

p > 1/3 (including inflation, p > 1).

� The scaling solution exists but is unstable for a negative, steep

potential p < 1/3.

• Contracting universe (N → −∞):

� The scaling solution exists and is stable for a negative steep potential

p < 1/3 (including ekpyrosis, p � 1).

� The scaling solution exists but is unstable for a positive flat potential

p > 1/3 (including matter collapse, p ' 2/3).
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Stochastic formalism applied to

collapsing models



Stochastic Formalism

The stochastic formalism allows us to study how the quantum noise ξ

modifies the long-wavelength (or coarse grained) field. A.Starobinsky,

1986.

The coarse grained field an its momentum can be written as (J.Grain

and V.Vennin [arXiv:1703.00447])

ϕ̇ = a−3πϕ + ξϕ , π̇ = −a3V ′(ϕ) + ξπ . (14)

By introducing a time-dependent cut-off scale (the so-called

coarse-graining scale)

kσ = σaH , (15)

the noises associated to the small wavelength part are described by their

two-points correlation matrix Ξf ,g , with each entry is given by

Ξf ,g = 〈0|ξf ξg |0〉 =
1

6π2

dk3
σ

dN
fk(N)g?k (N) . (16)
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Field perturbations

During accelerated expansion or collapse

• |aH| increases → modes that start on sub-Hubble scales

(k2 > a2H2) are stretched up to super-Hubble scales (k2 < a2H2).

Result

Quantum vacuum fluctuations k2/a2 � H2 at early times1 →
well-defined predictions for the power spectrum of perturbations on

super-Hubble scales in an expanding cosmology, or in a collapsing

cosmology.

1which means δϕ ' e−ikt/a

a
√
2k

for k2/a2 � H2.
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Field perturbations

The characteristics of the inflation and collapse models for different

values of p are summarised in table 1.

Power-law inflation Collapse

H > 0 H < 0

ȧ > 0, ä > 0 ȧ < 0, ä < 0

p > 1 0 < p < 1

Table 1: Comparing the quantities H, ȧ, ä and p for power-law inflation and

collapse. Although ȧ is negative in the collapse case, its magnitude |ȧ| is

increasing. p < 0 is not allowed since this requires ρϕ + Pϕ < 0.
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Power-law collapse

For a power-law cosmology

a ∝ |t|p , (17)

the Mukhanov-Sasaki equation becomes

d2v

dη2
+

(
k2 − ν2 − 1/4

η2

)
v = 0 , where ν =

3

2
+

1

p − 1
. (18)

The growing mode solution of quantum fluctuations on large scales (late

times) for kη → 0

δϕk =
i

a

√
1

4πk

Γ(|ν|)2|ν|

|kη||ν|−1/2 . (19)
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Power-law collapse

It gives a spectrum of field perturbations on super-Hubble scales as η → 0

Pδϕ =

[
Γ(|ν|)2|ν|

(ν − 1/2)23/2Γ(3/2)

]2(
H

2π

)2

|kη|3−2|ν| . (20)

Thus a power-law collapse gives rise to a power-law spectrum for field

fluctuations on super-Hubble scales with spectral tilt

∆nδϕ =
d lnPδϕ
d ln k

= 3− 2|ν| . (21)

∆nδϕ = 0 for

• Slow-roll inflation (w = −1 and ν = 3/2);

• Pressureless collapse (w = 0 and ν = −3/2);

D.Wands [arXiv:0809.4556] 18
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Perturbed equation of state w

By perturbing the dimensionless variable x

δx =
κ√
6

1

H

(
˙δϕ− Aϕ̇− ϕ̇

H
δH

)
, (22)

we obtain the correlation matrix of the noise at the critical point (B)

Ξx,x(N) =
Γ2(|ν|)ν222|ν|+4

(12π)3σ2|ν|−3

(
2

2ν − 1

)2|ν|+4

(|ν| − ν)2κ2H2(N) . (23)

The noise term always vanishes for ν > 0, hence the scalar field

perturbations at leading-order on large scales correspond to adiabatic

perturbations. This includes the power-law inflation (ν = 3/2) and the

ekpyrotic (ν = 1/2) scenarios.

Here we are making the analysis in terms of δx since δx and δw have a direct relation given by δw = 4xBδx 19
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Solutions for the quantum noise

The stochastic version around the classical critical point x = xB is

x̄ ′ = m(x̄ − xB) + ξ̂x with m =
λ2 − 6

2
, (24)

and its variance is

σ2
x(N) =

〈
(x̄(N)− xB)2

〉
= σ2

x,cl(N) + σ2
x,qu(N)

= σ2
x(N?)e2m(N−N?) +

∫ N

N?

dS e2m(N−S)Ξx,x(S)

(25)

Growth rate of classical and quantum perturbations

The quantum variance decays with time if we have

3 + 2ν

ν − 1/2
> 0 . (26)

This is the case if either ν > 1/2 or ν < −3/2.
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Solutions for the quantum noise

• Classical perturbations grow faster than the quantum noise if

ν < −3/2, and the quantum noise grows faster if ν > −3/2;

Also, the condition (26) provides a shift in the spectrum (Zeldovich and

Novikov, 1983; Wands, 1999; Finelli and Brandenberger 2002)

ns = 1 +
12w

1 + 3w
, (27)

and w is related to ν.

21



Solutions for the quantum noise

When ν = −3/2− ε, where ε is a small positive parameter, w < 0 and

the spectrum becomes redder.

Figure 4: Evolution for ns as function of ν. The horizontal dotted lines enclose

the 68% confidence level of the values of ns measured by Planck collaboration

2018. 22



Maximum lifetime of the collapse phase at the fixed point

If σ2
x,qu = 1 =⇒ does quantum noise change the dynamics?

Pressureless collapse (ν = −3/2)

|H(N)| ≈
√

134

N? − N
Mpl . (28)

Drives away from fixed point before the Planck scale if (N? − N) > 134.

Radiation-dominated collapse (ν = −1/2)

|H(N)| ≈ 13

σ
Mpl . (29)

Cannot escape fixed point since σ < 1.

23
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Maximum lifetime of the collapse phase at the fixed point

Figure 5: Evolution of the Hubble rate. To get a sensible deviation from the

fixed point we start in, the initial scale must be set at low energy.
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Final considerations



Summary

Inflation / Ekpyrotic collapse (ν > 0) Pressureless collapse (ν < 0)

δx = 0 (adiabatic perturbation) δx 6= 0 (non-adiabatic perturbation)

• Inflation and Ekpyrotic collapse are both classical and quantum

stable;

• Pressureless collapse is quantum unstable;

• For ν = −3/2, we found the quantum diffusion takes us away from

the critical point if we start the collapse from very low energy scales

and if it lasts more than 134 e-folds.

25



To do

Effects of gauge corrections in a collapsing universe

The gauge issue by using the stochastic formalism beyond the usual

slow-roll approximation has been discussed by Pattison et al.

[arXiv:1905.06300] and we intend to extend this idea to a collapsing

universe.

The possibility of a bounce

Since in this work we have used the number of e-folds, which is a

monotonic time parameter, our analysis is limited to a collapsing

universe. Hence, to modelise a bounce, we need to change our time

variable. In doing so, we would be able to introduce stochastic

fluctuations of the geometry leading to a bounce.
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Obrigada!
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