Origin of most of universe's visible matter - Theory and experiment

Gastão Krein
Instituto de Física Teórica, São Paulo

PPG Cosmo - UFES
18 December 2020

What's about

Nothing really ambitious

What's about

Nothing really ambitious

Understand origin of the matter that amounts to 5% of the mass of the universe

What's about

Nothing really ambitious

Understand origin of the matter that amounts to 5% of the mass of the universe

Actually:

We are even less ambitious

Actually:

We are even less ambitious

What is the origin of the mass of protons and neutrons (nucleons)?

Actually:

We are even less ambitious

What is the origin of the mass of protons and neutrons (nucleons)?

Computers gave an answer to the question

Nucleon mass comes from quarks and gluons

Quarks and gluons

- degrees of freedom of Quantum Chromodynamics: Q C D

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{QCD}}=\mathcal{L}_{\mathrm{G}}+\mathcal{L}_{\text {light }}+\mathcal{L}_{\text {heavy }} \\
&=-\frac{1}{4} G_{\mu \nu}^{a}(x) G^{a \mu \nu}(x)+\bar{q}(x)\left(i \not D-m_{\text {light }}\right) q(x)+\bar{Q}(x)\left(i \not D-m_{\text {heavy }}\right) Q(x) \\
& G_{\mu \nu}^{a}= \partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}-g f^{a b c} A_{\mu}^{b} A_{\nu}^{c} \\
& m_{\text {light }}=\left(\begin{array}{ccc}
m_{u} & 0 & 0 \\
0 & m_{d} & 0 \\
0 & 0 & m_{s}
\end{array}\right) \quad m_{\text {heavy }}=\left(\begin{array}{ccc}
m_{c} & 0 & 0 \\
0 & m_{b} & 0 \\
0 & 0 & m_{t}
\end{array}\right) \\
& m_{u}, m_{d}, m_{s} \simeq \mathcal{O}(\mathrm{MeV}) \quad m_{c}, m_{b} \sim \mathcal{O}(\mathrm{GeV}) \quad m_{t} \simeq 173 \mathrm{GeV}
\end{aligned}
$$

Light-hadron masses

Science
 2008

Ab Initio Determination of Light Hadron Masses

S. Dürr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann, S. D. Katz, S. Krieg, T. Kurth, L. Lellouch, T. Lippert, K. K. Szabo and G. Vulvert

Hadron-mass differences

Science

Ab initio calculation of the neutron-proton mass difference
Sz. Borsanyi, S. Durr, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, L. Lellouch, T. Lippert, A. Portelli, K. K. Szabo and B. C. Toth

Science 347 (6229), 1452-1455. DOI: 10.1126/science. 1257050

Nucleon weak axial charge

nature
International journal of science

A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics
C. C. Chang, A. N. Nicholson, E. Rinaldi, E. Berkowitz, N. Garron, D. A. Brantley, H. Monge-Camacho,
C. J. Monahan, C. Bouchard, M. A. Clark, B. Joó, T. Kurth, K. Orginos, P. Vranas \& A. Walker-Loud

Nature 558, 91-94 (2018)

Hadron mass computation

$h(x)$: hadron interpolating field e.g. $\pi^{+}(x)=\bar{d}(x) \gamma_{5} u(x)$

$$
\left\langle h(x) h^{\dagger}(x+T)\right\rangle=\frac{\int\left[\mathcal{D} \psi \bar{\psi} A_{\mu}\right] h(x) h^{\dagger}(x+T) e^{-\int d^{4} x \mathcal{L}_{\mathrm{QCD}}}}{\int\left[\mathcal{D} \psi \bar{\psi} A_{\mu}\right] e^{-\int d^{4} x \mathcal{L}_{\mathrm{QCD}}}}
$$

$$
\lim _{T \rightarrow \infty}\left\langle h(x) h^{\dagger}(x+T)\right\rangle \sim e^{-M_{h} T}
$$

Yet, we are not satisfied

We want to know more:

How did it happen?*

*F. Wilczek, The lightness of being: Mass, ether, and the unification of forces (Basic Books, 2008)

Back ~ 40 years

$$
\text { - }|h(\boldsymbol{p})\rangle \text { : hadron state*, } p=\left(E_{h}(\boldsymbol{p}), \boldsymbol{p}\right)
$$

*Normalized such that expectation value of T^{00} gives the hadron energy

Back ~ 40 years

- $|h(\boldsymbol{p})\rangle$: hadron state*,$p=\left(E_{h}(\boldsymbol{p}), \boldsymbol{p}\right)$
$-\langle h(\boldsymbol{p})| T^{\mu \nu}(x)|h(\boldsymbol{p})\rangle=p^{\mu} p^{\nu} / E_{h}(\boldsymbol{p}), \quad T^{\mu \nu}(x):$ en.-mom. tensor
*Normalized such that expectation value of T^{00} gives the hadron energy

Back ~ 40 years

$$
\begin{aligned}
& -|h(\boldsymbol{p})\rangle: \text { hadron state*, } p=\left(E_{h}(\boldsymbol{p}), \boldsymbol{p}\right) \\
& -\langle h(\boldsymbol{p})| T^{\mu \nu}(x)|h(\boldsymbol{p})\rangle=p^{\mu} p^{\nu} / E_{h}(\boldsymbol{p}), \quad T^{\mu \nu}(x) \text { : en.-mom. tensor } \\
& -\langle h(\boldsymbol{p})| T_{\mu}^{\mu}(x)|h(\boldsymbol{p})\rangle=p^{\mu} p_{\mu} / E_{h}(\boldsymbol{p})=m_{h}^{2} / E_{h}(\boldsymbol{p})
\end{aligned}
$$

*Normalized such that expectation value of T^{00} gives the hadron energy

Back ~ 40 years

- $|h(\boldsymbol{p})\rangle$: hadron state*, $p=\left(E_{h}(\boldsymbol{p}), \boldsymbol{p}\right)$
$-\langle h(\boldsymbol{p})| T^{\mu \nu}(x)|h(\boldsymbol{p})\rangle=p^{\mu} p^{\nu} / E_{h}(\boldsymbol{p}), \quad T^{\mu \nu}(x):$ en.-mom. tensor
$-\langle h(\boldsymbol{p})| T_{\mu}^{\mu}(x)|h(\boldsymbol{p})\rangle=p^{\mu} p_{\mu} / E_{h}(\boldsymbol{p})=m_{h}^{2} / E_{h}(\boldsymbol{p})$
- Take $m_{\text {light }}=0$ and $m_{\text {heavy }}=\infty$ in QCD Lagrangian:
*Normalized such that expectation value of T^{00} gives the hadron energy

Back ~ 40 years

- $|h(\boldsymbol{p})\rangle:$ hadron state*, $p=\left(E_{h}(\boldsymbol{p}), \boldsymbol{p}\right)$
$-\langle h(\boldsymbol{p})| T^{\mu \nu}(x)|h(\boldsymbol{p})\rangle=p^{\mu} p^{\nu} / E_{h}(\boldsymbol{p}), \quad T^{\mu \nu}(x)$: en.-mom. tensor
$-\langle h(\boldsymbol{p})| T_{\mu}^{\mu}(x)|h(\boldsymbol{p})\rangle=p^{\mu} p_{\mu} / E_{h}(\boldsymbol{p})=m_{h}^{2} / E_{h}(\boldsymbol{p})$
- Take $m_{\text {light }}=0$ and $m_{\text {heavy }}=\infty$ in QCD Lagrangian:

Classical action is scale invariant: $x^{\mu} \rightarrow \lambda x^{\mu}$
*Normalized such that expectation value of T^{00} gives the hadron energy

Back ~ 40 years

- $|h(\boldsymbol{p})\rangle:$ hadron state*, $p=\left(E_{h}(\boldsymbol{p}), \boldsymbol{p}\right)$
$-\langle h(\boldsymbol{p})| T^{\mu \nu}(x)|h(\boldsymbol{p})\rangle=p^{\mu} p^{\nu} / E_{h}(\boldsymbol{p}), \quad T^{\mu \nu}(x)$: en.-mom. tensor
$-\langle h(\boldsymbol{p})| T_{\mu}^{\mu}(x)|h(\boldsymbol{p})\rangle=p^{\mu} p_{\mu} / E_{h}(\boldsymbol{p})=m_{h}^{2} / E_{h}(\boldsymbol{p})$
- Take $m_{\text {light }}=0$ and $m_{\text {heavy }}=\infty$ in QCD Lagrangian:

Classical action is scale invariant: $x^{\mu} \rightarrow \lambda x^{\mu}$
Conserved current: $\partial_{\mu} J_{\mathrm{D}}^{\mu}(x)=0$ where $J_{\mathrm{D}}^{\mu}(x)=x_{\nu} T^{\mu \nu}(x)$

Back ~ 40 years

- $|h(\boldsymbol{p})\rangle$: hadron state*, $p=\left(E_{h}(\boldsymbol{p}), \boldsymbol{p}\right)$
$-\langle h(\boldsymbol{p})| T^{\mu \nu}(x)|h(\boldsymbol{p})\rangle=p^{\mu} p^{\nu} / E_{h}(\boldsymbol{p}), \quad T^{\mu \nu}(x)$: en.-mom. tensor
$-\langle h(\boldsymbol{p})| T_{\mu}^{\mu}(x)|h(\boldsymbol{p})\rangle=p^{\mu} p_{\mu} / E_{h}(\boldsymbol{p})=m_{h}^{2} / E_{h}(\boldsymbol{p})$
- Take $m_{\text {light }}=0$ and $m_{\text {heavy }}=\infty$ in QCD Lagrangian:

Classical action is scale invariant: $x^{\mu} \rightarrow \lambda x^{\mu}$
Conserved current: $\partial_{\mu} J_{\mathrm{D}}^{\mu}(x)=0$ where $J_{\mathrm{D}}^{\mu}(x)=x_{\nu} T^{\mu \nu}(x)$
Since $\partial_{\mu} T^{\mu \nu}(x)=0 \rightarrow \partial_{\mu} J_{\mathrm{D}}^{\mu}(x)=0 \rightarrow T_{\mu}^{\mu}(x)=0 \Rightarrow m_{h}=0$

Back ~ 40 years - cont'd

- Quantum action IS NOT scale invariant: $\alpha_{s}=g^{2} / 4 \pi \xrightarrow{\text { reg. }} \alpha_{s}(\mu)$

$$
T_{\mu}^{\mu}(x)=\frac{\beta\left(\alpha_{s}\right)}{2 \alpha_{s}} G_{\mu \nu}^{a}(x) G^{a \mu \nu}(x)
$$

This is the trace anomaly

- For $m_{\text {light }}=0$ and $m_{\text {heavy }}=\infty: m_{h}=\frac{\beta\left(\alpha_{s}\right)}{2 \alpha_{s}}\langle h| G_{\mu \nu}^{a}(x) G^{a \mu \nu}(x)|h\rangle$
- For $m_{\text {light }} \neq 0$ and $m_{\text {heavy }}$ finite

$$
\begin{aligned}
m_{h} & =\frac{\beta\left(\alpha_{s}\right)}{2 \alpha_{s}}\langle h| G_{\mu \nu}^{a} G^{a \mu \nu}|h\rangle+\langle h| \bar{q} m_{\text {light }} q|h\rangle \\
m_{N} & = \\
& \simeq \\
& \simeq 860 \mathrm{MeV} \quad \simeq 80 \mathrm{MeV} \text { (Higgs) }
\end{aligned}
$$

How about the pion?

When $m_{\text {light }}=0 \rightarrow m_{\pi}=0$
(pion is a Goldstone boson)

How about the pion?

When $m_{\text {light }}=0 \rightarrow m_{\pi}=0$
(pion is a Goldstone boson)

$$
\begin{aligned}
\frac{\beta\left(\alpha_{s}\right)}{2 \alpha_{s}}\langle N(\boldsymbol{p})| G_{\mu \nu}^{a}(x) G^{a \mu \nu}(x)|N(\boldsymbol{p})\rangle & =\frac{m_{N}^{2}}{E_{N}(\boldsymbol{p})} \neq 0 \\
\frac{\beta\left(\alpha_{s}\right)}{2 \alpha_{s}}\langle\pi(\boldsymbol{p})| G_{\mu \nu}^{a}(x) G^{a \mu \nu}(x)|\pi(\boldsymbol{p})\rangle & =\frac{m_{\pi}^{2}}{E_{N}(\boldsymbol{p})}=0
\end{aligned}
$$

How about the pion?

When $m_{\text {light }}=0 \rightarrow m_{\pi}=0$
(pion is a Goldstone boson)

$$
\begin{aligned}
\frac{\beta\left(\alpha_{s}\right)}{2 \alpha_{s}}\langle N(\boldsymbol{p})| G_{\mu \nu}^{a}(x) G^{a \mu \nu}(x)|N(\boldsymbol{p})\rangle & =\frac{m_{N}^{2}}{E_{N}(\boldsymbol{p})} \neq 0 \\
\frac{\beta\left(\alpha_{s}\right)}{2 \alpha_{s}}\langle\pi(\boldsymbol{p})| G_{\mu \nu}^{a}(x) G^{a \mu \nu}(x)|\pi(\boldsymbol{p})\rangle & =\frac{m_{\pi}^{2}}{E_{N}(\boldsymbol{p})}=0
\end{aligned}
$$

How does this happen?

Heavy quarkonium - nucleon scattering

Small QN relative momentum

Quarkonium: $\underbrace{\phi(s \bar{s})}_{\text {light }}, \underbrace{\eta_{c}(c \bar{c}), J / \psi(c \bar{c}), \eta_{b}(b \bar{b}), \Upsilon(b \bar{b})}_{\text {heavy }}$

Heavy quarkonium - nucleon (QN)

Low QN momentum interaction

- Heavy quarkonium: small object, radius r_{Q}

Heavy quarkonium - nucleon (QN)

Low QN momentum interaction

- Heavy quarkonium: small object, radius r_{Q}
- Interacts by exchanging gluons with nucleon's light quarks

Heavy quarkonium - nucleon (QN)

Low QN momentum interaction

- Heavy quarkonium: small object, radius r_{Q}
- Interacts by exchanging gluons with nucleon's light quarks
- Low relative momentum, gluon wavelength $\lambda_{g} \sim r_{N}$ (nucleon radius)

Heavy quarkonium - nucleon (QN)

Low QN momentum interaction

- Heavy quarkonium: small object, radius r_{Q}
- Interacts by exchanging gluons with nucleon's light quarks
- Low relative momentum, gluon wavelength $\lambda_{g} \sim r_{N}$ (nucleon radius)
- $r_{Q} \ll r_{N}$: quarkonium small dipole in soft gluon fields

Heavy quarkonium - nucleon (QN)

Low QN momentum interaction

- Heavy quarkonium: small object, radius r_{Q}
- Interacts by exchanging gluons with nucleon's light quarks
- Low relative momentum, gluon wavelength $\lambda_{g} \sim r_{N}$ (nucleon radius)
- $r_{Q} \ll r_{N}$: quarkonium small dipole in soft gluon fields
- QCD multipole expansion (\sim OPE)

QN forward scattering amplitude*

QCD multipole expansion

$$
\begin{aligned}
\left.f_{Q N}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right)\right|_{\boldsymbol{p}^{\prime}=\boldsymbol{p}} & =\frac{\mu_{Q N}}{2 \pi} \frac{1}{2}\left[\frac{2 T_{F}}{3 N_{c}}\left\langle\varphi_{Q}\right| \boldsymbol{r} \frac{1}{E_{b}+H_{\text {octet }}} \boldsymbol{r}\left|\varphi_{Q}\right\rangle\right]\langle N(\boldsymbol{p})|\left(g \boldsymbol{E}^{a}\right)^{2}|N(\boldsymbol{p})\rangle \\
& =\frac{\mu_{Q N}}{2 \pi} \frac{1}{2} \alpha_{Q}\langle N(\boldsymbol{p})|\left(g \boldsymbol{E}^{a}\right)^{2}|N(\boldsymbol{p})\rangle
\end{aligned}
$$

- $\mu_{Q N}$ reduced mass, $\boldsymbol{p}, \boldsymbol{p}$ ' relative c.m. momenta
- α_{Q} quarkonium color polarizability
- $T_{F}=1 / 2, N_{c}=3$
* Peskin, Bhanot \& Peskin, Kaidalov \& Volkovitsky, Kharzeev, Luke et al., Voloshin, ...

Trace anomaly and $\langle N|\left(g E^{a}\right)^{2}|N\rangle$

$$
\frac{\beta\left(\alpha_{s}\right)}{2 \alpha_{s}}\langle N| G_{\mu \nu}^{a}(x) G^{a \mu \nu}(x)|N\rangle=m_{N}, \quad \beta\left(\alpha_{s}\right) \stackrel{N_{f}=3}{=}-\frac{9}{4 \pi} \alpha_{s}^{2}
$$

Trace anomaly and $\langle N|\left(g E^{a}\right)^{2}|N\rangle$

$$
\frac{\beta\left(\alpha_{s}\right)}{2 \alpha_{s}}\langle N| G_{\mu \nu}^{a}(x) G^{a \mu \nu}(x)|N\rangle=m_{N}, \quad \beta\left(\alpha_{s}\right) \stackrel{N_{f}=3}{=}-\frac{9}{4 \pi} \alpha_{s}^{2}
$$

Inequality (almost saturated)*:

$$
\begin{aligned}
\langle N|\left[\left(g \boldsymbol{E}^{a}\right)^{2}-\left(g \boldsymbol{B}^{a}\right)^{2}\right]|N\rangle & =-\frac{1}{2}\langle N| g^{2} G_{\mu \nu}^{a}(x) G^{a \mu \nu}(x)|N\rangle \\
& =\frac{16 \pi^{2}}{9} m_{N} \\
& \leqslant\langle N|\left(g \boldsymbol{E}^{a}\right)^{2}|N\rangle
\end{aligned}
$$

[^0]
Theory: J / ψ-nucleon

Lattice:

- $J / \psi N$ interaction: attractive, not very strong
- Used quenched confs. or large quark masses, need extrapolation to physical masses
- Extrapolation: use effective field theory (EFT) - QNEFT*
- QNEFT degrees of freedom: $J / \psi, N=(p, n), \pi$

Theory: J / ψ-nucleon

Lattice:

- $J / \psi N$ interaction: attractive, not very strong
- Used quenched confs. or large quark masses, need extrapolation to physical masses
- Extrapolation: use effective field theory (EFT) - QNEFT*
- QNEFT degrees of freedom: $J / \psi, N=(p, n), \pi$

Models:

- Phenomenological spherical well, simple but insightful
- QCD multipole expansion + chiral soliton model (χ CSQM)

$$
\text { J. T. Castellà and G. Krein, Phys. Rev. D 98, } 014029 \text { (2018) }
$$

Effective field theory for $Q N$: QNEFT

Q polarizability + Chiral EFF (χ EFT)

J. T. Castellà and GK, Phys. Rev. D 98, 014029 (2018)

Degrees of freedom, scales \& power counting

D.O.F.: nucleons, quarkonia, pions

Scales: $E_{N}, E_{Q} \sim m_{\pi} \ll \Lambda_{\chi} \sim 1 \mathrm{GeV}$
P.C.: (Weinberg) Lagrangian in powers of m_{π} / Λ_{χ}

Loops: dimensional regularization

QNEFT predictions

QNEFT: J / ψ polarizability $+\chi$ EFT

- Weakly attractive, relatively short-ranged
- van der Waals type of force

$$
V_{\mathrm{vdW}}(r) \xrightarrow{r \gg 1 / 2 m_{\pi}} \frac{3 g_{A}^{2} m_{\pi}^{4}\left(c_{d i}+c_{m}\right)}{128 \pi^{2} F^{2}} \frac{e^{-2 m_{\pi} r}}{r^{2}}
$$

- s-wave dominated:

Effective range expansion (ERE):

$$
f_{0}(k)=\frac{1}{k \cot \delta-i k}=\frac{1}{-\frac{1}{a_{0}}+\frac{1}{2} r_{0} k^{2}-i k}\left\{\begin{array}{c}
-0.71 \mathrm{fm} \leqslant a_{0} \leqslant-0.35 \mathrm{fm} \\
1.29 \mathrm{fm} \leqslant r_{0} \leqslant 1.35 \mathrm{fm}
\end{array}\right.
$$

$J / \psi N$ van der Waals force (Latt-QNEFT)

Models

Finite well ${ }^{1}$:

$$
V(r)=\left\{\begin{array}{ccc}
-\frac{2 \pi}{3}\left(\frac{\alpha_{J / \psi}}{R_{N}^{3}}\right) m_{N} & \text { for } & r<R_{N} \\
0 & \text { for } & r>R_{N}
\end{array}\right.
$$

Multipole expansion $+\chi \mathrm{SQM}^{2}$

$$
V(r)=-\alpha_{J / \psi} \frac{4 \pi^{2}}{b}\left(\frac{g^{2}}{g_{s}^{2}}\right)\left[\nu \rho_{E}(r)-3 p(r)\right]\left\{\begin{array}{l}
\rho_{E}(r), p(r): \text { energy density, pressure } \\
b=27 / 3, \quad g^{2} / g_{s}^{2}=1, \quad \nu=1.5
\end{array}\right.
$$

[^1]
ERE parameters - models

Essentially one unknown parameter: $\alpha_{J / \psi}$

ERE parameters (in fm) for different $\alpha_{J / \psi}$ (in GeV^{-3})

	Finite well*		$\chi \mathrm{SQM}$	
$\alpha_{J / \psi}$	a_{0}	r_{0}	a_{0}	r_{0}
2.00	-0.68	1.59	-0.42	1.86
1.60	-0.47	1.86	-0.30	2.25
0.54	-0.12	4.50	-0.08	6.00
0.24	-0.05	9.46	-0.03	13.05
${ }^{*} R_{N}=1 \mathrm{fm}$				

Experimental access to $\langle N|\left(g E^{a}\right)^{2}|N\rangle$

—Will focus on $Q=J / \psi$
Lattice QCD simulations and models point toward a weakly attractive, S-wave dominated

$$
J / \psi N \text { interaction }
$$

small relative $J / \psi N$ momenta: $f_{\text {forw. }} \simeq-a_{J / \psi N}$

$$
a_{J / \psi N}=-\frac{\mu_{J / \psi N}}{2 \pi} \frac{1}{2} \alpha_{J / \psi}\langle N|\left(g \boldsymbol{E}^{a}\right)^{2}|N\rangle
$$

Need to measure $a_{J / \psi N}$
(But to obtain $\langle N|\left(g \boldsymbol{E}^{a}\right)^{2}|N\rangle$ need to know $\alpha_{J / \psi}$)

Electro- and photoproduction @ JLab, EIC, EicC

Analyses of recent Glue-X experiment*

- Extracted very small values of scattering length $0.003 \mathrm{fm} \leqslant\left|a_{J / \psi N}\right| \leqslant 0.025 \mathrm{fm}$ 100 times smaller than some of earlier theoretical estimates
- Issues:

No forward scattering, $t_{\text {thr. }} \simeq 1.5 \mathrm{GeV}^{2}$
Vector meson dominance problematic, not enough time for J / ψ to be formed

* I.I. Strakovsky, D. Epifanov, and L. Pentchev, PRD 101, 042201 (2020)
L. Pentchev and I.I. Strakovsky, arXiv:2009.04502v1

$\bar{p} d \rightarrow J / \psi n \pi^{0}$ @ AMBER (?)

Input: $\bar{p} d \rightarrow J / \psi \pi^{0}$

FIG. 3. Kinematically allowed regions for the three-body decay $J / \psi \rightarrow \pi^{0} p \bar{p}$ and the related charmonium production reaction $p \bar{p} \rightarrow \pi^{0} J / \psi$.

FIG. 4. Theoretical and experimental cross sections for $p \bar{p} \rightarrow$ $\pi^{0} J / \psi$. The theoretical predictions are the constant amplitude result Eq. (7) (solid) and the range of PCAC cross sections, from Eq. (8) (filled). The experimental points are from E760 [9].

Taken from: A. Lundborg, T. Barnes, and U. Wiedner, PRC 73, 096003 (2006)

Similar to $\bar{p} d \rightarrow D \bar{D} N$ @ $\overline{\text { PANDA }}$

Fig. 1. Contributions to the reaction $\bar{p} d \rightarrow D \bar{D} N:$ a) the Born (nucelon exchange) diagram. T_{A} denotes the annihilation amplitude. b) Meson rescattering diagram. T_{M} denotes the meson-nucleon scattering amplitude. Note that both $D N$ and $\bar{D} N$ scatterings contribute to the reaction amplitude.
J. Haidenbauer, GK, U.-G. Meißner, and A. Sibirtsev, Eur. Phys. J. A 37, 55 (2008)

Femtoscopy in heavy-ion collisions @ LHC

Figure from:
A new laboratory to study hadron-hadron interactions
ALICE collaboration, arXiv:2005.11495

Correlation function

Experimental extraction

- $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$: measured hadron momenta m_{1}, m_{2} : hadron masses
$\boldsymbol{P}=\boldsymbol{p}_{1}+\boldsymbol{p}_{2}, \quad \boldsymbol{k}=\frac{m_{2} \boldsymbol{p}_{1}-m_{1} \boldsymbol{p}_{2}}{m_{1}+m_{2}}:$ c.m. and relative momenta

Correlation function

Experimental extraction

- $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$: measured hadron momenta m_{1}, m_{2} : hadron masses

$$
\boldsymbol{P}=\boldsymbol{p}_{1}+\boldsymbol{p}_{2}, \quad \boldsymbol{k}=\frac{m_{2} \boldsymbol{p}_{1}-m_{1} \boldsymbol{p}_{2}}{m_{1}+m_{2}}: \text { c.m. and relative momenta }
$$

- Pair's c.m. frame: $\boldsymbol{P}=0 \rightarrow \boldsymbol{p}_{1}=-\boldsymbol{p}_{2} \Rightarrow \boldsymbol{k}=\boldsymbol{p}_{1}=-\boldsymbol{p}_{2}$

$$
C(k)=\frac{A(k)}{B(k)}\left\{\begin{array}{l}
A(k): \text { yield from same event (coincidence yield) } \\
B(k): \text { yield from different events (background) }
\end{array}\right.
$$

Correlation function

Experimental extraction

- $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$: measured hadron momenta m_{1}, m_{2} : hadron masses

$$
\boldsymbol{P}=\boldsymbol{p}_{1}+\boldsymbol{p}_{2}, \quad \boldsymbol{k}=\frac{m_{2} \boldsymbol{p}_{1}-m_{1} \boldsymbol{p}_{2}}{m_{1}+m_{2}}: \text { c.m. and relative momenta }
$$

- Pair's c.m. frame: $\boldsymbol{P}=0 \rightarrow \boldsymbol{p}_{1}=-\boldsymbol{p}_{2} \Rightarrow \boldsymbol{k}=\boldsymbol{p}_{1}=-\boldsymbol{p}_{2}$

$$
C(k)=\frac{A(k)}{B(k)}\left\{\begin{array}{l}
A(k): \text { yield from same event (coincidence yield) } \\
B(k): \text { yield from different events (background) }
\end{array}\right.
$$

- Corrections: nonfemtoscopic correlations, momentum resolution, etc $\leftarrow \xi(k)$

$$
C(k)=\xi(k) \frac{A(k)}{B(k)}
$$

Correlation function

Theoretical interpretation

- Kooning-Pratt formula

$$
C(k)=\xi(k) \frac{A(k)}{B(k)}=\int d^{3} r S_{12}(\boldsymbol{r})|\psi(\boldsymbol{k}, \boldsymbol{r})|^{2}
$$

$S(\boldsymbol{r})$: source, pair's relative distance distribution function (in pair's frame) $\psi(\boldsymbol{k}, \boldsymbol{r})$: pair's relative wave function

- One needs here $\psi(\boldsymbol{k}, \boldsymbol{r})$ for $0 \leqslant r \leqslant \infty$, not asymptotic as in scattering
- $\psi(\boldsymbol{k}, \boldsymbol{r})$: properties of the interaction

Prediction confirmed by femtoscopy

Scattering Studies with Low-Energy Kaon-Proton Femtoscopy in Proton-Proton Collisions at the LHC

S. Acharya et al.*
(A Large Ion Collider Experiment Collaboration)

Recent prediction: $\Lambda_{c} N$

J. Haidenbauer and GK, Eur. Phys. J. A 56, 184 (2020)

Femtoscopy of J / ψ-nucleon

- Interaction: weakly attractive, s-wave dominated

$$
\psi(\boldsymbol{k}, \boldsymbol{r})=e^{i \boldsymbol{k} \cdot \boldsymbol{r}}+\psi_{0}(k, r)-j_{0}(k r)
$$

$\psi_{0}(k, r)$ contains the effects of the interaction

- Simplification (not unrealistic):

$$
S_{12}(r)=\frac{1}{\left(4 \pi R^{2}\right)^{3 / 2}} e^{-r^{2} / 4 R^{2}}
$$

Normally used: $R=1 \mathrm{fm}-1.3 \mathrm{fm}(p \bar{p}), \quad R=1.5 \mathrm{fm}-4.0 \mathrm{fm}(p A, A A)$

- Correlation function:

$$
C(k)=1+\frac{4 \pi}{\left(4 \pi R^{2}\right)^{3 / 2}} \int_{0}^{\infty} d r r^{2} e^{-r^{2} / 4 R^{2}}\left[\left|\psi_{0}(k, r)\right|^{2}-\left|j_{0}(k r)\right|^{2}\right]
$$

Source size \times interaction range

If emission happens outside "interaction range": $\psi_{0}(k, r) \rightarrow \psi_{0}^{\text {asy }}(k, r)$

$$
\begin{aligned}
\psi_{0}^{a s y}(k, r) & =\frac{\sin \left(k r+\delta_{0}\right)}{k r}=e^{-i \delta_{0}}\left[j_{0}(k r)+f_{0}(k) \frac{e^{i k r}}{r}\right] \\
f_{0}(k) & =\frac{e^{i \delta_{0}} \sin \delta_{0}}{k} \stackrel{k \rightarrow 0}{\approx}_{-1 / a_{0}+r_{0} k^{2} / 2-i k}^{1}
\end{aligned}
$$

Lednicky-Lyuboshits (LL) model

$$
\begin{aligned}
C(k) & =1+\frac{\left|f_{0}(k)\right|^{2}}{2 R^{2}}\left(1-\frac{r_{0}}{2 \sqrt{\pi} R}\right)+\frac{2 \operatorname{Re} f_{0}(k)}{\sqrt{\pi} R} F_{1}(2 k R)-\frac{\operatorname{Im} f_{0}(k)}{R} F_{2}(2 k R) \\
F_{1}(x) & =\frac{1}{x} \int_{0}^{x} d t e^{t-x}, \quad F_{2}(x)=\frac{1}{x}\left(1-e^{-x^{2}}\right)
\end{aligned}
$$

Validity: $r 0 \ll R$
Universal formula, independent of interaction details

Correlation and $\left\langle(g \boldsymbol{E})^{2}\right\rangle_{N}$

$$
\mathrm{LL} \text { for } k \rightarrow 0 \text { : }
$$

$$
C(k)=1-\frac{1}{2 \pi^{3 / 2}}\left(1-\frac{8}{3} k^{2} R^{2}\right) \frac{\mu_{J / \psi N} \alpha_{J / \psi}\left\langle(g \boldsymbol{E})^{2}\right\rangle_{N}}{R}
$$

$\boldsymbol{C}(k)$ gives direct access to $\left\langle(g \boldsymbol{E})^{2}\right\rangle_{N}{ }^{*}$
*Under validity of LL model, Gaussian source

Predictions for J / ψ-nucleon correlation

Lattice QCD data extrapolated to the physical pion mass by QNEFT*

Used here LL \& ERE

* J. T. Castellà and GK, Phys. Rev. D 98, 014029 (2018)

Summary \& Perspectives

Summary \& Perspectives

- Origin of hadrons' mass: QCD trace anomaly (known for 40 years)

Summary \& Perspectives

- Origin of hadrons' mass: QCD trace anomaly (known for 40 years)
- Experimental access to a key matrix element, $\langle N|\left(g \boldsymbol{E}^{a}\right)^{2}|N\rangle$

Summary \& Perspectives

- Origin of hadrons' mass: QCD trace anomaly (known for 40 years)
- Experimental access to a key matrix element, $\langle N|\left(g \boldsymbol{E}^{a}\right)^{2}|N\rangle$
- Electro- and photoproduction of $J / \psi, \Upsilon$

Summary \& Perspectives

- Origin of hadrons' mass: QCD trace anomaly (known for 40 years)
- Experimental access to a key matrix element, $\langle N|\left(g \boldsymbol{E}^{a}\right)^{2}|N\rangle$
- Electro- and photoproduction of $J / \psi, \Upsilon$
-Issues due to extrapolation, vector meson dominance

Summary \& Perspectives

- Origin of hadrons' mass: QCD trace anomaly (known for 40 years)
- Experimental access to a key matrix element, $\langle N|\left(g \boldsymbol{E}^{a}\right)^{2}|N\rangle$
- Electro- and photoproduction of $J / \psi, \Upsilon$
-Issues due to extrapolation, vector meson dominance
$-\bar{p} d \rightarrow J / \psi N \pi^{0} @ \operatorname{AMBER}(?)$

Summary \& Perspectives

- Origin of hadrons' mass: QCD trace anomaly (known for 40 years)
- Experimental access to a key matrix element, $\langle N|\left(g \boldsymbol{E}^{a}\right)^{2}|N\rangle$
- Electro- and photoproduction of $J / \psi, \Upsilon$
-Issues due to extrapolation, vector meson dominance
$-\bar{p} d \rightarrow J / \psi N \pi^{0}$ @ AMBER (?)
- Femtoscopy in high energy $p p$ and heavy-ion collisions

Summary \& Perspectives

- Origin of hadrons' mass: QCD trace anomaly (known for 40 years)
- Experimental access to a key matrix element, $\langle N|\left(g \boldsymbol{E}^{a}\right)^{2}|N\rangle$
- Electro- and photoproduction of $J / \psi, \Upsilon$
-Issues due to extrapolation, vector meson dominance
$-\bar{p} d \rightarrow J / \psi N \pi^{0}$ @ AMBER (?)
- Femtoscopy in high energy $p p$ and heavy-ion collisions
- How about the pion? $J / \psi \pi$ Femtoscopy?

Summary \& Perspectives

- Origin of hadrons' mass: QCD trace anomaly (known for 40 years)
- Experimental access to a key matrix element, $\langle N|\left(g \boldsymbol{E}^{a}\right)^{2}|N\rangle$
- Electro- and photoproduction of $J / \psi, \Upsilon$
-Issues due to extrapolation, vector meson dominance
$-\bar{p} d \rightarrow J / \psi N \pi^{0}$ @ AMBER (?)
- Femtoscopy in high energy $p p$ and heavy-ion collisions
- How about the pion? $J / \psi \pi$ Femtoscopy?
- Did not touch on: validity of multipole expansion, factorization

Thank you

Funding

[^0]: * Sibirtsev \& Voloshin

[^1]: ${ }^{1}$ J. Ferretti, E. Santopinto, M. N Anwar and M. Bedolla, Phys. Lett. B 789, 562 (2019)
 ${ }^{2}$ M.I. Eides, V.Y. Petrov and M.V. Polyakov, Eur. Phys. J. C 78, 36 (2018)

