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Motivation



• The Einstein–Hilbert action

( =

∫ (
'

16c�
+ !<

)
√−634G. (1)

• The Einstein field equations

'`a −
1

2
'6`a = 8c�)`a . (2)

• Confirmed by experiments in the Solar System.
• Confirmed by the emission of gravitational waves by

binary systems and it is in accordance with the bounds
on the velocity of gravitational waves.

General Relativity theory
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• The necessity of the dark sector to explain cosmological
observational data within GR’s framework.
• The initial singularity before the Big Bang.
• The theoretical motivation to unify GR and QM in a

single theoretical framework.

Why study scalar-tensor theories
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Brans-Dicke theory



• Introduced by Brans and Dicke in 1961 (based on the
work of Pascual Jordan 1959).
• The B-D action

( =
1

16c

∫
34G
√−6

(
q' − l

q
∇`q∇aq

)
+

∫
34G
√−6(<, (3)

where q is a scalar field, l is the scalar field coupling
constant and (< is the matter term.

Brans-Dicke action
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• It is commonly understood that in the l→∞ limit BD
theory becomes identical to GR.
• When l � 1, the field equations seem to show that

q =
1

�#
+ O

(
1

l

)
. (4)

• There are some examples where exact solutions cannot
be continuously deformed into the corresponding a GR
solutions by taking the |l | → ∞ limit:

q =
1

�#
+ O

(
1
√
l

)
. (5)

Coupling constant l
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• Variation with respect to the metric

�`a =
1

q

(
∇`∇aq − 6`a�q

)
+ l
q2

(
∇`q∇aq −

1

2
6`a∇Uq∇Uq

)
+ 8c

q
)`a . (6)

• Variation with respect to the scalar field

�q =
8c

3 + 2l
). (7)

• Energy-momentum conservation

∇`) `a = 0. (8)

Brans-Dicke field equations
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• The matter content described by a perfect fluid
) `a = (d + ?)D`Da − ?6`a and equation of state ? = Ud with
−1 ≤ U ≤ 1.

• The field equations in the FLRW universe with spatial
section curvature

3

(
¤0
0

)2
= 8c

d

q
− 3
¤0
0

¤q
q
+ l

2

( ¤q
q

)2
, (9)

¥q + 3
¤0
0
¤q = 8c

(3 + 2l) (d − 3?) . (10)

• The continuity equation

¤d + 3
¤0
0
(d + ?) = 0. (11)

Brans-Dicke field equations
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• A conformal transformation on the metric

6`a = q
−16̃`a (12)

• The action in the Einstein frame

S =
∫

34G
√
−6̃

{
'̃ − nf;`f

;`

}
+
∫

34G
√
−6̃S<, (13)

where

n = sign
(
l + 3

2

)
(14)

and f is a new scalar field defined as

f =

√����l + 3

2

���� ln (
q

q0

)
. (15)

Conformal transformation
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Regular cosmological
solutions in BD theory



• Replace an initial singularity with a bounce - a smooth
transition from contraction to expansion - in order to
solve fundamental problems in cosmology (the horizon
and flatness problems).
• The conditions to have a bounce are

¥0 (C) > 0, (16)
¤0 (C0) = 0. (17)

Models with bounce
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• To obtain a bouncing solution in GR: violation of the null
energy condition (NEC) d + ? ≥ 0 is required (usually).
• Consequence: the appearance of exotic kind of matter

fields, for example, a scalar field with negative energy
density (ghosts).
• The crucial point in bouncing models is to construct a

regular model in which such ghosts are absent while still
having a bouncing phase.

Models with bounce
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• Gurevich, Finkelstein and Ruban obtained a class of flat
space solutions for the equation of state ? = Ud, where
0 ≤ U < 1.

Gurevich’s solutions
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• The first family of solutions l < − 3
2

0 = 00
[
(\ + \−)2 + \2+

]f/2�
4
±
√

2
3
|l |−1 1

�
arctan

(
\+\−
\+

)
, (18)

q = q0
[
(\ + \−)2 + \2+

] (1−3U)/2�
4∓3(1−U)

√
2
3
|l |−1 5 (\) , (19)

where \ is the parameterized time : 3C = 03U3\.
• This model admits a cosmological bounce: when \ →∞,
0 does not vanish. The infinite contraction occurs till a
regular minimum 0<8= and after it is followed by the
expansion.

First family of solutions
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• The second family of solutions l > − 3
2

0 = 00 (\ − \+)l/3(f∓
√

1+ 2
3
l) (\ − \−)l/3(f±

√
1+ 2

3
l) , (20)

q = q0 (\ − \+)
(
1∓
√

1+ 2
3
l

)
/(f∓
√

1+ 2
3
l) (\ − \−)

(
1±
√

1+ 2
3
l

)
/(f±
√

1+ 2
3
l)
.

(21)

• Regular bounce: 1
4 < U < 1 and − 3

2 < l ≤ −
4
3 .

• The energy conditions for the scale factor are satisfied.

Second family of solutions
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• Equation of state: ? = 1
3 d.

• l > − 3
2 :

0([) = 00 ([ − [+)
1
2
± 1

2

√
1+ 23 l ([ − [−)

1
2
∓ 1

2

√
1+ 23 l , (22)

q([) = q0 ([ − [+)
∓ 1√

1+ 23 l ([ − [−)
± 1√

1+ 23 l . (23)

• l < − 3
2 :

0([) = 00 [([ + [−)2 + [2+]
1
2 4
± 1√

2
3 |l |−1

arctan
[+[−
[+
, (24)

q([) = q04
∓ 2√

2
3 |l |−1

arctan
[+[−
[+
. (25)

Universe filled with radiative fluid
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• The strong and null energy conditions in General
Relativity are given by

¥0
0

= −4c�

3
(d + 3?) > 0, (26)

−2
¥0
0
+ 2

(
¤0
0

)
= 8c� (d + ?) > 0. (27)

• In the Einstein frame: both energy conditions are
satisfied as far as l < − 3

2 .
• This is consistent with the fact that in the Einstein frame

the cosmological scenarios are singular unless l < − 3
2 .

• In the Jordan frame: there are non singular models if
− 3

2 < l < − 4
3 . In this range the scalar field obeys the

energy condition.

Energy conditions
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Canonical quantization
of the BD theory



• The construction of a quantum cosmological model
encounters many problems.
• Absence of an explicit time coordinate due to the

invariance by time reparametrizations in the classical
theory.
• Way to solve: to allow the matter fields to play the role of

time, which can be achieved through Schutz’s
description of a fluid.
• Choice of the suitable formalism to interpret the

quantum theory and thus obtain specific predictions.

Quantum formulation
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• Quantize the Hamiltonian constraint Htot ≈ 0 to obtain
the Wheeler-DeWitt Equation �̂totΨ = 0.
• Gravitational Lagrangian

L� =
1

#

[
6
(
q0 ¤02 + 02 ¤0 ¤q

)
− l03

¤q2
q

]
. (28)

• L� as a function of the conjugated momenta c@ = mL
m ¤@

and a Legendre transformation:

H� =
#

(3 + 2l)

(
l

12q0
c20 +

1

20
c0cq −

q

203
c2q

)
. (29)

Hamiltonian formulation
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• Total Hamiltonian HC>C = H� + H" .
• Radiative fluid ? = 1

3 d, Schutz’s formalism:

H" =
#

0
c) , (30)

where ) is directly related to the entropy of the fluid.
•

H = #

{
1

(3 + 2l)

[
l

12q0
c20 +

1

20
c0cq −

q

203
c2q

]
− 1

0
c)

}
. (31)

Total Hamiltonian
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• c: → −8m: (Jordan’s frame)

m20Ψ +
?

0
m0Ψ +

6

l

q2

02

{
0

q
m0mq−

(
m2qΨ +

@

q
mqΨ

)}
= −128

(3 + 2l)
l

qm)Ψ,

(32)
where ?, @ are ordering factors.
• Einstein’s frame

m21Ψ +
?̄

1
m1Ψ − l̃

q2

12

{
m2qΨ +

@̄

q
mqΨ

}
= −8m)Ψ . (33)

• Equations (32) and (33) are Schrödinger-like:

�̂Ψ = 8
m

mC
Ψ , (34)

if we consider the matter field playing the role of time.

Canonical quantization
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• Einstein’s frame:

0 = 4
− f√

|1+ 23 l | 1. (35)

• The Schrödinger equation in terms of the f

m21Ψ +
1

1
m1Ψ − n

1

12
m2fΨ = −8m)Ψ. (36)

• The regular solution is

Ψ(1, f) = �(:, �)�a (
√
�1)48 (:f−�) ) , a =

√
−n |: | , (37)

where : is a separation constant.

Solution
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Analysis via the de
Broglie-Bohm approach



• The many-world interpretation: every state of the wave
function is real, existing in parallel with each other (our
universe is one of many). Does not require the collapse
of the wave function, it is possible to investigate
different states separately from the wave packet.
• The de Broglie-Bohm (dBB) interpretation: the wave

function is a guide to the possible evolution of the
universe⇒ it is observer-independent.
• Bohmian mechanics:

Ψ(G8 , C) = '(G8 , C)48( (G8 ,C) . (38)

• Probability density of the trajectory:
d(G8 , C) = |Ψ(G8 , C) | = '2 (G8 , C).

• Bohmian trajectories:

? 9 = m 9( =

(
8

2

)
ΨΨ∗ , 9 −Ψ∗Ψ, 9

|Ψ|2 . (39)

Many worlds & dBB interpretations
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• General wave packet

Ψ(1, f, )) =
∫ ∞

0

∫ +∞

−∞
�(:)Ga+14−(W+8) )G2�a (G1)48:f3:3G, (40)

with the definition G =
√
� and a = |: |.

• Integration in G

Ψ(1, f, )) =
∫ +∞

−∞
�(:) 1a

(U)a+1 4
− 12

4U 48:f3:. (41)

Wave packet
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• �(:) = X(:) (the world where a = 0), the contribution of
the scalar field vanishes:

Ψ(1, f, )) = 4
− 12

4U

U
. (42)

• Expected value of the scale factor:

< 1 >=
1

WN2

√
W2 + )2, (43)

where N is the normalization factor of the wave function.
• In this world a bounce occurs when ) � W, 〈1〉 → ) .

The scalar field is absent - Many worlds
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• Phase of the wave function:

( = )
12

4|U |2 − arctan

(
)

W

)
. (44)

• Bohmian trajectories (conjugate momenta ?1 = ¤1/2):

¤1 = 1)

|U |2 . (45)

• Solution:

1 = 10
√
W2 + )2. (46)

• This universe also has a bounce.

The scalar field is absent - dBB
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• Superposition function: �(:) = X(: − :0).
• Wave function:

Ψ(1, f, )) = 1a0

(U)a0+1 4
− 12

4U 48:0f , (47)

with a0 =
√
−n :0.

• We will analyze the Bohmian scenario for n = −1 and n = 1.

A single scalar mode
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• The phase of the wave function:

( =
12

4|U |2) − (: + 1) arctan

(
)

W

)
+:0f. (48)

• Solutions:

1 = 10
√
W2 + )2, (49)

f = f0 arctan

(
)

W

)
. (50)

• Jordan frame:

0 ∝ exp

−
arctan

(
)
W

)
√
|1 + 2

3l |


√
W2 + )2. (51)

• The classical solution is recovered asymptotically, but
the bounce in this case is asymmetric.

A single scalar mode, n = −1
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• We cannot compute the evolution of the scale factor by
evaluating the expectation values because the wave
function is not finite (energy spectrum is not bounded
from below).
• New feature: a = 8: .
• Solutions:

1 = 10
√
W2 + )2

√
f0 − :̄0 arctan

(
)

W

)
, (52)

f = 3 ln

{
f0 − :̄0 arctan

(
)

W

)}
, (53)

where 10 and f0 are constants and :̄0 = 36:0/(120W).
• Solutions are non-singular only if f0 >

c
2 :̄0 and f0 > 0.

A single scalar mode, n = 1
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• Jordan frame:

0 = 00
√
W2 + )2

{
f0 + :̄0 arctan

(
)

W

)}A
, (54)

with

A =
1

2

√
1 + 2

3l + 6√
1 + 2

3l

. (55)

• The classical solution is recovered asymptotically.

A single scalar mode, n = 1
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• Combines different scalar modes:

�(:) = X(: − :0) + [X(: + :0), (56)

with [ = ±1.
• The scalar field is not present in the phase of the wave

function, and we recover the same solutions already
given in the case the scalar field is absent.

Multiple scalar modes
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Classical scenario
• It is possible to obtain a singularity-free cosmological

solution if the Brans-Dicke parameter l varies as
−3/2 < l < −4/3.
• In this range, the energy conditions are satisfied in the

Einstein frame: the avoidance of the singularity is driven
by the non-minimal coupling.

Conclusions
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Quantum scenario
• The energy is bounded only for l < −3/2 (when the

energy condition is violated in the Einstein frame).
• For l > −3/2 the energy conditions are satisfied, but the

energy is not bounded from below, it becomes
problematic to employ the usual interpretation scheme
based on the Copenhagen formulation of quantum
mechanics: the wave function is not finite anymore.
• de Broglie-Bohm: for l > −3/2 we have either a singular

or non-singular solution. This implies that in the interval
− 3

2 < l < − 4
3 the classical model displays singularity-free

scenarios, while the quantum models may display either
singular or non-singular solution.

Conclusions
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