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MOTIVATION
• Parameterized Post-Newtonian (PPN) formalism provide practical and rigorous 

procedure to infer observational constraints for alternative theories of gravity.

• However, there are limitations since several of the alternative theories cannot be 
parametrized according to the original formalism.

• In those cases, one can work with an extended PPN formalism, but care must be 
taken when using the PPN bounds.

• Scalar-tensor and f(R) theories are cases where is not difficult to find in the 
literature different definitions of an effective gamma, which can lead to distinct 
constraints for the model.



GOAL
• We start by reviewing the fundamentals of the standard PPN formalism, with 

emphasis to its   parameter,  which is directly associated with tests concerning the 
propagation of electromagnetic waves.

• Based on that, we will explore an extended PPN, suitable for scalar-tensor 
theories, and discuss two others  -like parameters that emerge.

• We also address the similarities and differences between the gammas and the 
gravitational slip parameter ( ).

• Finally, we apply these discussions to massive Brans-Dicke, f(R) and Horndeski 
formulations.
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The PPN formalism and the 
physical meaning of γ



PPN FORMALISM HYPOTHESIS
• The matter of the system can be described as a perfect fluid.

• The relevant spacetime for the system is asymptotically flat.

• A well defined Newtonian limit must exist. 

• To obtain PN corrections to propagation of light we only need first order 
metric perturbations. The PPN metric, in this case, reads

 

 

 

gPPN
00 = − 1 + 2U + O(v4/c4)

gPPN
0i = 0 + O(v3/c3)

gPPN
ij = (1 + 2γU)δij + O(v4/c4)

U(x, t) ≡ ∫
ρ(x′�, t)

|x − x′�′�|
d3x′�

G = c = 1
and we use units such that



PHYSICAL MEANING OF γ
• Considering the PPN framework into the geodesic equation for photons, one 

can obtain the relations,
v i = [1 − (1 + γ)U]ni

dni

dt
= (1 + γ)(δij − ninj)∂jU

  is the photon four-v i

  is an unitary ni

• The relevant equations for the deflection of light by a static body, as well as the Shapiro time-
delay effect, are directly obtained from above. Both phenomena can be used to put bounds 
on  

• But the PPN hypothesis must hold. Among them, we recall that only the Newtonian potential 
is present at the O(2) and that   is a constant. Scalar-tensor theories need not to satisfy these 
conditions.
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EXTENDED PPN METRIC
• We want to consider PN equations of motion for photons in an extended 

PPN metric
g00 = − 1 + 2αeU + O(v4/c4)

g0i = 0 + O(v3/c3)

gij = (1 + 2γeU)δij + O(v4/c4)

αe and γe are functions of coordinates

  can at most be eliminated locallyαe

• From geodesic equation for photons, one finds

v i = [1 − (αe + γe)U]ni,

dni

dt
= (δij − ninj)∂j[(αe + γe)U]

…these equations with   are the same of 
GR for light.  This holds  even if  , or even if   
and   are spacetime functions that change 
considerably locally. 

αe + γe = 2
γe ≉ 1 αe

γe



THE  PARAMETERγΣ

• A direct comparison between the PN equations of motion of the PPN and 
EPPN allows one to identify the effective gamma parameter

γΣ = αe + γe − 1
v i = [1 − (1 + γΣ)U]ni

dni

dt
= (δij − ninj)∂j[(1 + γΣ)U]

• Indeed, this observation was done by Berry and Gair, in the specific context 
of f(R) theories (arXiv:1104.0819).

• Note that, whenever   is a constant,  it has exactly the same role that   has 
for light propagation
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WHAT ABOUT  THE OBSERVATIONAL BOUNDS ?
• The constraints on   cannot be applied to  . 

• The   bounds cannot be immediately applied to  , since it is required   
and a valid Newtonian limit (which is important for the gravitational mass 
definition).

• On the other hand, even without the knowledge of the mass of the Sun, one 
could test how the deflection angle changes for different impact parameter 
values.

γ γe

γ γΣ γΣ = cte

δθ = ( 1 + γΣ

2 ) 4M
d ( 1 + cos θ0

2 ) .



THE GRAVITATIONAL SLIP
• Within the cosmological context,

ds2 = a2(τ)[−(1 − 2ψ)dτ2 + (1 + 2ϕ)dx2]

η ≡
ϕ
ψ

Solar system context ηEPPN =
γe

αe

• a comparison between lensing effects generated by a given system with the non-
relativistic internal motion of the same system could be used to test the difference 
between the scalar potentials above.

• For the standard PPN metric, one has  .

• The point to be stressed is that the equality between slip and gamma is wrong in 
general, but it holds for the PPN.

ηPPN = γ



THE GAMMA IN MASSIVE BRANS-DICKE THEORIES
• We start by considering the following action,

S = ∫
−g

2κ [ΦR + 2
ω(Φ)

Φ
X − V(Φ)] d4x + Sm,

• And the PN approximation scheme,
Φ = φ0 + φ, with φ0 > 0 and φ ∼ O(2)

V(Φ) ≈ V0 + V1φ + V2φ2

ω(Φ) ≈ ω0 + ω1φ + ω2φ2

gμν = ημν + hμν

T00 ≈ ρ



THE GAMMA IN MASSIVE BRANS-DICKE THEORIES
• Solving the equation for the scalar field, one finds

φ =
κ

4π(3 + 2ω0) ∫
ρ(x′�, t)

|x − x′�|
e−mφ|x−x′�| d3x′� with m2

φ =
2 (V2φ0 − V1)

3 + 2ω0

• The metric equations yields

αe =
κ

16πφ0 (a1 + a2
φ
U ) with a1 ≡ 2 −

2
3 + 2ω0

V1

m2
φ

and a2 ≡
8π
κ (1 +

V1

m2
φ )

γe =
κ

16πφ0 (a3 − a2
φ
U ), with a3 ≡ 2 +

2
3 + 2ω0

V1

m2
φ

= 4 − a1 .



THE GAMMA IN MASSIVE BRANS-DICKE THEORIES
• One then obtains

γΣ = αe + γe − 1 =
κ

4πφ0
− 1 and η =

γe

αe
= − 1 +

4
a1 + a2φ/U

• The   parameter in generalized Brans-Dicke theories is always a constant and its 
value depends on the theory's coupling constant  .

• This means that its numerical value is influenced by Newtonian limit, or, in the 
absence of a Newtonian limit, by the definition of the mass (gravitational constant). 

• The gravitational slip   on other hand, is a spacetime function whose value is 
independent from  .
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ANOTHER PARAMETRIZATION COMMONLY USED

• There are references working with

g00 = − 1 + 2GeffU + O(v4/c4)

g0i = 0 + O(v3/c3)

gij = (1 + 2Geff γeffU)δij + O(v4/c4)

αe = Geff

γe = Geffγeff

γeff =
γe

αe
= η



Considerations on the
Newtonian limit



NEGLIGIBLE MASS SCALAR FIELD
• For a given mass   and inside the system of length scale  , with 

 , one has   and
mφ ℓ

m2
φℓ2 ∼ O(v/c) φ ∝ U

αe ≈
κ

4πφ0 ( 2 + ω0

3 + 2ω0 )
• Therefore, to satisfy the Newtonian limit the right hand side above must be 

equal to 1, which implies 
κ

4πφ0
=

3 + 2ω0

2 + ω0
⇒ γΣ =

1 + ω0

2 + ω0
.

• It is worth to reinforce that the   expression above is valid even where the 
Newtonian limit does not hold.

γΣ



LARGE MASS SCALAR FIELD
• For a given mass   and inside the system of length scale  , with 

 ,  one has   and
mφ ℓ

e−mφℓ ∼ O(1) φ ≪ U

αe ≈
κ a1

16πφ0

• Therefore, to satisfy the Newtonian limit the right hand side above must be 
equal to 1, which implies 

κ
4πφ0

=
4
a1

⇒ γΣ =
(3 + 2ω0)m2

φ + V1

(3 + 2ω0)m2
φ − V1

• The GR result   is found if either  ,   or  .γΣ = 1 mφ → ∞ ω0 → ∞ V1 → 0



INTERMEDIATE MASS SCALAR FIELD
• In the two cases before, the bounds on   can be applied to  

• If there is no Newtonian correspondence within the considered system,    still 
parametrizes light trajectories, but how the mass of Sun is determined? This question 
was considered by Alsing et al. (arXiv: 1112.4903)

• To exemplify, consider   . One finds

γ γΣ

γΣ

V1 = 0, ρ = M⊙δ3(x) and x = r

αe =
κ

8πφ0

M⊙

r (1 +
1

3 + 2ω0
e−mφr) Newtonian limit αe(r⊕) = 1

γΣ =
1 − 1

3 + 2ω0
e−mφr⊕

1 + 1
3 + 2ω0

e−mφr⊕
And this imply This is similar to the slip [ ] 

but still a true constant
η(r⊕) = γΣ



f(R) theories



METRIC f(R)
• The interpretation of a metric f(R) model as an effective scalar-tensor 

theory is done through

Φ ≡
df(R)
dR

, V(Φ) ≡ RΦ − f(R) and ω(Φ) = 0.

• Which gives φ0 = f1, V1 = 0, V2 =
1

4f2
 and  m2

φ =
1
6

f1
f2

.

�⌃ =

8
>>><

>>>:


4⇡f1

� 1 , in general ;

1
2 , if f1`

2

6f2
⇠ O(1) ;

1 , if e�
p

f1`2/(6f2) ⇠ O(1) .
<latexit sha1_base64="fZwWoRp3diVtBqDG2ZM3oULiC24=">AAAC+3icdVJLj9MwEHbCa1teLRy5jKiQulI3JGG3u1KFtIILNxZBd1equ5HjOlmrdhJiB20V+a9w4QBCXPkj3Pg3OH1IZQUjWfrmm5nPMx7HheBK+/5vx71x89btOzut9t179x887HQfnaq8Kikb01zk5XlMFBM8Y2PNtWDnRcmIjAU7i+evm/jZJ1Yqnmcf9KJgU0nSjCecEm2pqOt0oYVTIiWJ8HueSgIvoW2pmKU8q6lVVsb6rRZOSkJrPCdFQUy9jwsOSRSYvQAPBoBHgGWcX9U8g5RlrCTC4AGMMJ54IZXTRmElEJg6NGBjW0XAE7DcMm41ATMhLkJTD5PI5gJWXMLbfrDbKFp3S9PmjgZwTanFLuo9W/Wx1Fty8Bz6Q9tyuGuayzaaTSteMzDLZutxo07P98KD4WFwBGvgb8ABBJ6/tB5a20nU+YVnOa0kyzQVRKlJ4Bd6WpNScyqYaeNKsYLQOUnZxMKMSKam9XJ3Bp5ZZgZJXtqTaViy2xU1kUotZGwzJdGX6nqsIf8Vm1Q6OZrahRSVZhldXZRUAnQOzUeAGS8Z1WJhAaElt70CvSR2B9p+l7Z9hM2k8H9wGnrBCy98t987frV+jh30BD1FfRSgQ3SM3qATNEbUuXI+O1+db65xv7jf3R+rVNdZ1zxGf5n78w8M8uFR</latexit>



PALATINI f(R)
• Palatini formulations are a special case where  , implying that the 

scalar field is not dynamical,
ω = − 3/2

φ =
2κf2
f1

ρ Which gives αe =
κ

8πf1 (1 + 16πf2
ρ
U )

• The last term indicates that Newtonian gravity is violated inside matter. However, this 
violation is relevant only if the pressure and the internal energy are known from first 
principles.

• Thus, the Newtonian limit of Palatini f(R) theories is well posed if one sets  , 
and consequently  .

• For details on Palatini gravity please see Toniato, Rodrigues and Wojnar, arXiv:1912.12234

κ/4πf1 = 2
γΣ = 1



Extension to Horndeski theories



HORNDESKI THEORIES

S =
5

∑
i=2

1
2κ ∫ d4x −g ℒi + Sm

L2 = K(�, X), L3 = �G3(�, X)⇤�,

L4 = G4(�, X)R+G4X(�, X)
⇥
(⇤�)2 � (rµr⌫�)

2
⇤
,

L5 = G5(�, X)Gµ⌫rµr⌫�� 1

6
G5X(�, X)

⇥
(⇤�)3

� 3⇤�(rµr⌫�)
2 + 2(rµr⌫�)

3
⇤
.

<latexit sha1_base64="GsRafBvVVXwbEp6/dhAFhsrSZns="></latexit>

Action: Expansion:
ξ(φ, X) ≈ ξ(0,0) + ξ(1,0)φ + ξ(0,1)X + . . . ,
ξ = (K, Gi)

�⌃=

8
>>>>>><

>>>>>>:


4⇡G4(0,0)

� 1 , in general,

W �G2
4(1,0)

W +G2
4(1,0)

, if m2
'`

2 ⇠ O(1),

Wm2
' �K(1,0)G4(1,0)

Wm2
' +K(1,0)G4(1,0)

, if e�m'`⇠O(1).
<latexit sha1_base64="GeKMdBQ0v5lCqNy/yhLrxDQEZyg="></latexit>

The gamma:

W = G4(0,0) (K(0,1) − 2G3(1,0)) + 3G2
4(1,0),



CONCLUSIONS
• The differences between the gamma from PPN, its possible extensions and the gravitational 

slip are subtle but with important consequences to the physical bounds, as here discussed.

• The importance of precise statements about them becomes higher with the crescent use 
of PPN and related formalisms in the context of extragalactic astronomy.

• Essentially: the bounds on   cannot be applied to  , in general. They can be applied to   
when i) it is a constant and ii) the Newtonian limit is valid (or if the Keplerian mass can be 
corrected).

• The distinction between   and   is clear in scalar-tensor and f(R) theories.

• Care must be taken in applying PPN bounds to theories which does not have a well 
defined Newtonian limit.
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