
Physics of the Magnetosphere of 

Neutron Stars 



Recall about the internal structure of NS 

Neutron drip 





Mass-Radius Relation 

Highest known accurate mass is that of PSR J1614-2230 
              M = 1.97  0.04M (Demorest et al 2010) 











Why to study magnetic field effects in NS ? 

• Magnetic dipole radiation drains the rotational energy of pulsars 

 

• Magnetic fields affect the spectrum of the emitted radiation 

 

• Large magnetic fields affect the internal structure of the neutron star 

and its shape in particular 

 

• Magnetic fields modify the beta equilibrium in the inner crust and 

hence the equation of state in these regions 

 

• Magnetic fields induce electric fields able to accelerate particles at 

high energies 



Sketch of the pulsar magnetosphere and emission mechanisms   



Magnetic field regimes 

Weak regime:  H < Hcrit      critical field    Larmor’s radius = Bohr’s radius 

 

 

 

 

Magnetic white dwarfs are in this regime 

 

Strong regime: Hcrit < H < HSch  where HSch is the Schwinger field 

 

The majority of the pulsars are in this regime. The Schwinger field is derived from  

 

the condition   
 

 

Schwinger regime: H > HSch  quantum effects are important 

 

Magnetars belong to this high field regime  
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Magnetosphere of pulsars 
Magnetic fields participate on the equilibrium of the outer atmosphere of pulsars 

 

In the limit of very high conductivity, the hydrostatic equilibrium is described by 

 

 

 

 

Magnetic field cannot be neglected if   

 

 

For a typical NS: g ~ 1.9 x 1014 cm/s2  and  ~ 0.2 cm2/g  B ~ 1.5 x 108 G 

 

 

The magnetic field affects not only the equilibrium but also the radiative transfer, 

since the opacity is not the same in the direction of the field lines and 

perpendicular to them 
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Thomson scattering in anisotropic media 

Equation of motion  

 

 

Use the ansatz  

 

Replacing in the eq. of motion 

 

 

 

 

Identifying the terms 

 

 

 

 

Hence the solution is 
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To compute the scattering cross section, the dipolar emission approximation will be 

adopted – In this case, the scattered radiation rate must be equivalent of the 

emission rate by an electric dipole 

 

 

 

 

Case A – wave propagating perpendicular to the magnetic field (along the z-axis). 

The propagation vector is along the x-axis and the E-field has two components 

(polarization components) along the z-axis and the y-axis respectively 

 

 

 

Replace in the solution for the electron velocity and compute the time derivative 
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Squaring and rearranging the terms    

 

 

Where  

 

 

Replacing in the dipole-scattering relation  

 

 

Wave polarized in the direction of the B-field   

 

Wave polarized perpendicular to the B-field  
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Case B – wave propagating in the direction of B-field – propagation vector along 

the B-field and the electric field is perpendicular to the B-field 

 

The solution for the derivative of the velocity is 

 

 

 

 

Computing the square one obtains that now the dispersion function is simply 

 

 

 

Thus   

 

 

Polarized radiation is expected from the direction perpendicular to the magnetic 

field 
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Goldreich-Julian Model 

* Aligned magnetic and spin axes 

 

• Magnetosphere has Infinite 

conductivity 

 

 

 

• Goldreich-Julian charge  

 

 

 

 

• Energy loss – Poynting flux across the 

light cylinder  
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Aligned Rotator – numerical solution of magnetohydrodynamic equations 

2D-model  - charge distribution – 

non rotating star (Spitkovsky 2005) 

2D charge distribution –rotating star 

(Spitkovsky 2005) 



The Sturrock model – Pulsar winds 
           Crab                        B1509-58                      Vela 

The model assumes that in the open field lines zone the charge density is given 

by the Goldreich-Julian value – The emitted particle rate is 

 

 

 

 

 

Since                                  Rate of energy loss  
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Consider a (spherical) neutron star uniformly magnetized:  

 

 the internal magnetic field                 and the internal electric field  (  ) 

 

 

 

 

The external fields are  

 

 

and         

 

 

Particles accelerated along the pole ( = /2) 
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The braking index problem 

Definition  
2

n





Depends on the measurement of the second 

derivative of the rotation period 



The dynamics of the pulsar is fixed by the magnetic dipole radiation that carries 

angular momentum and energy, which is compensated by angular momentum and 

rotational energy losses. 

 

Radiation losses 

 

 

Rotational Energy losses   

 

 

From these eqs  

 

 

and                                                       hence 

 

 

             A pure magnetic dipole field cannot explain the observations! 

 

 Notice that since Lw  3  the expected braking index is n = 2 – More studies!                                                
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Association – Pulsars and SNRs 



Possible solution – the magnetic dipole migrates (Allen & Horvath 1997; 

Regimbau & de Freitas Pacheco 2001) due to surface tectonics (Link et al. 1998) 

 

In this case, the evolution of the rotation period is given by 

 

 

 

 

It results for second derivative 

 

 

 

 

and for the braking index  

 

 

If i(t) increases with time (di/dt > 0) observations can be reproduced since n < 3 

 

Final configuration – orthogonality between magnetic dipole and spin axes  
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            Pulsar population synthesis – motivations    

    

   a) to recover the pulsar population hidden by 
selection effects 

 

   b) true statistical parameters 

       i)   initial rotation period distribution 

       ii)  magnetic field distribution 

       iii) number of active pulsars and birthrate 

 

   c) gravitational wave background - event rates 

        



Simulations 
 

• Espace distribution (birth place) p(R,Z) of massive stars 
(pop. I) – spiral arms effects 

 

• Orbits in the Galaxy – local circular velocity model) + natal 
kick - bimodal  (Cordes & Chernoff 1997) 

 

• Distances from dispersion measure  (DM = neds )  
interstellar electron density from Taylor & Cordes (1993) 

 

• Initial period distribution  –  Gaussian  (Po , Po ) 

 

• Magnetic field distribution -  log-normal   (log B, logB ) 





Selection Effects 

• After time t, the pulsar should be in the sky area (l, b) covered by a 

given survey 

 

• ’’Flux density’’  L/D
2 > S(A, Ts, ne)  

 

 

 

     

 

 

 

• Emission beam width ( P-1/2)   

 

• Pulse smearing effects by the interstellar plasma  
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Population Parameters 
 

• Mean period – Po = 240±20 ms ; dispersion = 80±20 ms 
 
 

• Magnetic Field - <logB> = 13.0±0.4 and logB = 0.8±0.2 
 
 

• Magnetic dipole axis migration timescale - t = (104)x103 years 
 
 

• Number of active pulsars in the Galaxy : 253 000 
 
 

• Birthrate : one every 88 years  (mean lifetime of 22 Myr) 
 
 

• Single-to-binary ratio = 347  (required to explain the properties of  
     PSR B2303+46 and PSR J0737-3039B) 

 
 

  
 





The unexpected guest: PSR1640-4631 

 
n = 3.150.03 

Possible solutions: 

 

1) Migration of the magnetic dipole axis toward the spin axis (Elksi et al. 2016) 

 

2) Magnetic field decay (Blandford & Romani 1988) 

 

3) Mass quadrupole – emission of GW (de Araujo et al. 2016; Chen 2016) 

 

 

GW emission rate:  

 

 

 

Period evolution    
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derivating: 

 

 

Braking index  

 

 

 

where   

 

For PSR1640-4631: 

 

 

 

 

Observations   = 0.081     
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Ellipticity upper limits derived from LIGO 

 

( ) /xx yy zzI I I  

Owen (2005) → ‘solid strange stars’ 
 

410 

Konno et al. (2000) → highly magnetized stars 
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--------------------------------------------------------------------------- 

Pulsar              fgw  (Hz)           max                      LIGO 

----------------------------------------------------------------- 

  Crab                      59.9              7.5x10-4                      2.6x10-4  (S5) 

J0621+10                69.3              1.9x10-7               2.4x10-4 

J0737-30                 88.1              8.1x10-7               3.2x10-5 

J0711-68               364.2              9.0x10-9               3.6x10-6 

J0751+18              574.9              3.2x10-9               1.7x10-6 

J1024-07               387.4              9.1x10-9               1.0x10-6 

J1744-11               490.9              4.4x10-9               1.2x10-6 

J2124-33               405.6              9.0x10-9                7.1x10-7  

---------------------------------------------------------------------------------------- 

Abbott et el. 2007 – runs 3 & 4 - LIGO 



The Crab Pulsar 

(*) The magnetic breaking age (~1330yr) is higher than the pulsar age (~950yr) 

(*) Gravitational radiation contributes also to energy losses (Ostriker & Gunn 1969)  
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numerical solution gives 

 pairs (, xa) 





Electric Fields 

An electric dipole is associated to the rotating 

magnetic dipole 

 

                              (see Jackson p. 389) 
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The resulting  electric fields can accelerate particles to very high energies 
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Particle Acceleration 

Potential along the equator of the magnetic pole   

 

 

Energy acquired by particles  

 

 

hence  

 

Integrating, one obtains for the maximum (radiation losses were not taken into 

account) particle energy 

 

 

 

 

 

                     No acceleration for an aligned magnetic dipole!          
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Polar cap electrodynamics 

In the polar caps, differences between the 

local (surface) charge density and the 

Julian-Goldreich charge produce an electric 

field along the magnetic field lines 

 

The E-field present in the “gap” is limited by 

the production of electron-positron pairs by 

curvature radiation. These pairs produce a 

“screening” effect. 

 

The formation of a “gap” requires fields 

larger than 1013 G (Gil & Mitra 2001) 

Leptons accelerated in the “gap” may emit neutrinos via the process 

                                     (Karminker & Yakovlev 1993)                        
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 Energy of an electron at a distance z from the surface (Harding & Muslimov 2001) 

 

 

 

Assume that inside the gap the charge density is given by the Goldreich-Julian 

corotating charge, corrected by relativistic effects . Then, the number of relativistic 

electrons with energies between E and E+dE is 

 

 

 

 

 

where   

 

 

 

From these eqs.   
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Let                            be the probability per unit of time and per energy interval for 

 

 an electron of energy E to emit a neutrino par of total energy           

 

Then, the neutrino production rate per energy interval is 

 

 

 

The mean neutrino pair energy is                               with   

 

 

When B > 1014 G  we are in the regime  >> 1 if the electron energy E > 5 MeV 

 

In this regime, the energy of the pair is comparable to the electron energy and the 

emission probability reduces to 
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Computing the production rate (constrained by the condition 1<<  << (MW/m)3  ) 

 

 

 

 

Therefore the expected neutrino pair luminosity in the range 0.01-20 GeV 

 

 

 

 

 

A magnetar with a period of 10s at a distance of  1 kpc will produce a neutrino 

flux of 6.1 x 10-14 erg/(cm2s) below the sensibility of present neutrino detectors. 

(Present sensibility – Ice Cube, Antares, ~ two orders of magnitude lower) 
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Final Considerations 

• Pulsars are sources of different energetic processes: they 

accelerate particles, produce energetic winds which affect 

the dynamics of the SN remnant 

 

• They are probes for nuclear interaction (EoS) and some NS 

may even have deconfined matter in their cores 

 

• NS can be also probes for modified gravitational theories 

 

• Rotating NS are potential GW sources that could be 

detected by the future generation of laser interferometers 


