NULL GOEDESICS IN KERR AND SCHWARZSCHILD SPACE-TIME

Eunice Monyenye Omwoyo Supervised by Prof. Marc Casals

OVERVIEW

- Brief introduction
- Explanation of Kerr metric and the associated null geodesics.
- Formulation of the code
- Visualize sample plots using the code
- Conclusion

INTRODUCTION

- In General Relativity, a geodesic generalizes the notion of a straight line to curved space-time.
- A massless test particle in motion on a certain space-time with no forces acting on it follows a trajectory called a null geodesic.
- Null geodesics are crucial in understanding the nature of black holes.
- For instance, recently, the Event Horizon Telescope showed the image of a shadow of the supermassive black hole M87*. The shadow of a black hole is formed by null geodesics.

KERR METRIC

• The Kerr metric, in Boyer-Lindquist coordinates (t, r, θ, ϕ) , has the form:

$$ds^{2} = -\left(1 - \frac{2 \operatorname{Mr}}{\Sigma}\right)dt - \frac{4 \operatorname{M} a \, r \sin^{2} \theta}{\Sigma} \, d\phi dt + \frac{\Sigma}{\Delta} \, dr^{2} + \Sigma d\theta^{2} + \left(r^{2} + a^{2} + \frac{2 \operatorname{Mra}^{2} \operatorname{Sin}^{2} \theta}{\Sigma}\right) \sin^{2} \theta \, d\phi^{2};$$

$$\Sigma = r^{2} + a^{2} \cos^{2} \theta; \ \Delta = r^{2} - 2 \operatorname{Mr} + a^{2}$$

- The metric admits two killing vectors ∂_t and ∂_{ϕ} hence it is stationary and axially symmetric.
- In the limit a>>0, the Kerr metric reduces to a Schwarzschild metric.
- Motion in Kerr space-time is governed by constants of motion E(related to the geometry being stationary), L(related to the axial symmetry), Q(a hidden symmetry. It arises from separation of variables in Hamilton-Jacobi equation).
- The constants of motion in used in this work have been rescaled as

$$\lambda = \frac{l}{E}, \eta = \frac{\mathcal{Q}}{E^2}$$

• Null geodesic equations in Kerr space-time are described by the equations; (Null geodesics of the Kerr exterior

Samuel E. Gralla and Alexandru Lupsasca Phys. Rev. D 101, 044032)

$$\frac{\Sigma}{E} p^{r} = \pm_{r} \sqrt{R(r)}$$

$$\frac{\Sigma}{E} p^{\theta} = \pm_{\theta} \sqrt{\Theta(\theta)}$$

$$\frac{\Sigma}{E} p^{\theta} = \frac{a}{\Delta} (r^{2} + a^{2} - a\lambda) + \frac{\lambda}{\sin^{2} \theta} - a$$

$$\frac{\Sigma}{E} p^{t} = \frac{(r^{2} + a^{2})}{\Delta} (r^{2} + a^{2} - a\lambda) + a(\lambda - a\sin^{2} \theta)$$

$$p^{\mu} = \frac{d x^{\mu}}{d\sigma}; \quad \sigma \text{ is the affine parameter}$$

$$R(r) = (r^{2} + a^{2} - a\lambda)^{2} - \Delta(r)(\eta + (\lambda - a)^{2})$$

$$\Theta(\theta) = \eta + a^{2} \cos^{2} \theta - \lambda^{2} \cot^{2} \theta$$

• New parametrization, "Mino time" τ , defined as

 $\frac{\mathrm{d} \mathbf{x}^{\mu}}{\mathrm{d} \tau} = \frac{\Sigma}{E} p^{\mu}$

FORMULATION OF THE CODE

We have formulated the code using (Null geodesics of the Kerr exterior Samuel E. Gralla and Alexandru Lupsasca

Phys. Rev. D 101, 044032).

All that the user needs is a given set of initial positions x^{μ} , initial momentum p^{μ} together with the commands that we shall define to evaluate and analyze various properties of these Null geodesics.

```
(a, ts, rs, \thetas, \phis, p<sup>r</sup>s, p<sup>\theta</sup>s, p<sup>\phi</sup>s).
```

• We first define the code such that ;

```
p_{\mu} p^{\mu} = 0
```

• We then calculate the constants of motion, λ and η

CONSTANTS OF MOTION CODE

Examples for constants of motion

• To evaluate constants of motion, the user needs the command: ConstantsOfMotion

INME ConstantsOfMotion [0.9, 0, 13, $\pi/2$, 0, -476, 2, 1]

```
Out[4]= {\lambda \to 0.193859 , \eta \to 0.505469 }
```

```
ConstantsOfMotion [0.9, 0, 18, \pi/2, 0, -476, 0, 1](*equatorial orbit Kerr*)
```

- $Out[5]= \{\lambda \to 0.570609 \ , \ \eta \to 0.\}$
- $\begin{array}{l} \mbox{Ind} \mbox{Ind} \end{array} \mbox{ConstantsOfMotion [0, 0, 13, π/2, 0, $-50, 0, 1](*equatorial orbit schwarzschild *)} \\ \mbox{Outbox} \mbox{IG} \mbox{I} = \left\{ \lambda \rightarrow \frac{169}{\sqrt{2643}} \ , \ \eta \rightarrow 0 \right\} \end{array}$
- [n] ConstantsOfMotion [0, 0, 13, π, 0, −476, 0, 1](*polar orbit schwarzchild *) outre { $\lambda \rightarrow 0, n \rightarrow 0$ }
- ConstantsOfMotion [0.5, 0, 13, π , 0, -476, 0, 1](*a polar orbit kerr*)
- $\text{ ConstantsOfMotion [0, 0, 3, <math>\pi/2, 0, 0, 0, 1$](*schwarzschild photon sphere *) $\text{ outpressure } \{\lambda \to 3 \ \sqrt{3}, \eta \to 0\}$

RADIAL MOTION

• The radial potential is given by;

$R(r) = (r^{2} + a^{2} - a\lambda)^{2} - \Delta(r)(\eta + (\lambda - a)^{2})$

- This potential has 4 roots(r1,r2,r3,r4) which can be complex or real.
- The roots will be the turning points for the null geodesics.
- The nature of the roots will determine the various cases of radial motion.

ROOTS OF THE RADIAL POTENTIAL CODE EXAMPLES OF RADIAL POTENTIAL ROOTS

• The radial potential roots will be calculated using the command, KerrNullGeoRadialRoots

case one: r1<r2<rs<r3<r4

outile { $r_1 \rightarrow -5.76165$, $r_2 \rightarrow 0.0430491$, $r_3 \rightarrow 2.73615$, $r_4 \rightarrow 2.98245$ }

case two: r1<r2<r3<r4<rs

- h[13]= KerrNullGeoRadialRoots [0.8, 0, 14, $\pi/2.3$, 0, 200, 0, -10]
- outi3⊨ { $r_1 \rightarrow -9.24444$, $r_2 \rightarrow 0.0109996$, $r_3 \rightarrow 2.70194$, $r_4 \rightarrow 6.53149$ }
- [14] = KerrNullGeoRadialRoots $[0.5, 0, 17, \pi/2, 0, -120, 0, 9]$
- $\text{Out14} \quad \{r_1 \rightarrow -14.679 \ , \ r_2 \rightarrow -1.77636 \ \times 10^{-15} \ , \ r_3 \rightarrow 1.89616 \ , \ r_4 \rightarrow 12.7828 \ \}$

case three: r1<r2<rs, r3=r4*</pre>

- h[15]= KerrNullGeoRadialRoots [0.9, 0, 2, 3, 0, -5, 10, 8]
- $\label{eq:outspin} \text{outspin} \quad \{r_1 \rightarrow -5.38943 \ , \ r_2 \rightarrow 0.506942 \ , \ r_3 \rightarrow 2.44124 \ -0.549201 \ \textit{i}, \ r_4 \rightarrow 2.44124 \ +0.549201 \ \textit{i}\}$

case four: r1=r2*, r3=r4*

- h[16]= KerrNullGeoRadialRoots [0.2, 0, 10, 0.3, 0, -10, 0, 0]
 - (16) $\{r_1 \rightarrow -0.08033 0.103099 \ i, r_2 \rightarrow -0.08033 + 0.103099 \ i, r_2 \rightarrow -0.08033 \$
 - $r_3 \rightarrow 0.08033 0.280294 \ i, \ r_4 \rightarrow 0.08033 + 0.280294 \ i\}$

double roots

- h[17]= KerrNullGeoRadialRoots [0.5, 0, 2.8832177419263525 , 0, 0, 0, 0, 20, 10]
- Outt7 [$r_1 \rightarrow -5.89884$, $r_2 \rightarrow 0.1324$, $r_3 \rightarrow 2.88322$, $r_4 \rightarrow 2.88322$]
- h[18]= KerrNullGeoRadialRoots [0, 0, 3, 0, 0, 0, 20, 10]
- Out[18]= { $r_1 \rightarrow -6, r_2 \rightarrow 0, r_3 \rightarrow 3, r_4 \rightarrow 3$ }

Radial motion code

EXAMPLES OF RADIAL MOTION

• To evaluate radial motion, the user needs the command, RadialMotion RadialMotion [0.3, 0, 2.4, 2.7, 0, 2.1, 7.1, 20]["RadialRoots "] $\{r_1 \rightarrow -5.99652 \ , \ r_2 \rightarrow 0.0429647 \ , \ r_3 \rightarrow 2.45168 \ , \ r_4 \rightarrow 3.50187 \ \}$ RadialMotion [0.3, 0, 2.4, 2.7, 0, 2.1, 7.1, 20] case1Function [0.3,0,2.4,2.7,0,2.1,7.1,20,<<>>] RadialMotion [0.3, 0, 2.4, 2.7, 0, 3, 7.1, 20]["RadialRoots "] $\{r_1 \rightarrow -5.90006, r_2 \rightarrow 0.0429986, r_3 \rightarrow 2.52155, r_4 \rightarrow 3.33551\}$ RadialMotion [0.3, 0, 2.4, 2.7, 0, 2.1, 7.1, 20]["ConstantsofMotion "] $\{\lambda \rightarrow 1.62165, \eta \rightarrow 24.5772\}$ RadialMotion [0.3, 0, 2.4, 2.7, 0, 2.1, 7.1, 20][7](*to visualize the equation used*) 0.362974 + 14.4439 JacobiSN [2.70285 (0.723386 + τ), 0.782948]² 8.4482 - 2.40872 JacobiSN [2.70285 (0.723386 + τ), 0.782948]² RadialMotion $[0.8, 0, 14, \pi/2.3, 0, 200, 0, -10][\tau]$ 78.0277 - 42.6257 JacobiSN [4.41294 (0.188295 + τ), 0.544983]² 11.9464 - 15.7759 JacobiSN [4.41294 (0.188295 + τ), 0.544983]² RadialMotion $[0, 0, 14, \pi/2, 0, 200, 0, 10]$ case2Function [0,0,14,Pi 2,0,200,0,10,<<>>]

- [n[77]= RadialMotion [0.9, 0, 2, 3, 0, -5, 10, 8]
- out77] case3Function [0.9,0,2,3,0,-5,10,8,<<>>]
- n[78]= RadialMotion [0.2, 0, 10, 0.3, 0, -10, 0, 0]
- out78⊨ case4Function [0.2,0,10,0.3,0,-10,0,0,<<>>]

POLAR MOTION

The angular potential is also evaluated to arrive at four roots $(\theta_1, \theta_2, \theta_3, \theta_4)$. The nature of these roots lead to two cases of polar motion.

ANGULAR POTENTIAL ROOTS

Example for angular potential roots

The command KerrNullGeoAngularRoots is used to calculate the roots of the radial potential

<u>ordinary motion: two real roots $\theta_1 \le \pi/2 \le \theta_4$ and is characterized by $\eta \ge 0$ </u>

```
In[80]= KerrNullGeoAngularRoots [0.3, 0, 2.4, 2.7, 0, 2.1, 7.1, 20]
```

 $\label{eq:alpha} \ \ \{\theta_1 \rightarrow 0.315649 \ , \ \theta_2 \rightarrow 1.5708 \ - \ 3.54952 \ i, \ \theta_3 \rightarrow 1.5708 \ + \ 3.54952 \ i, \ \theta_4 \rightarrow 2.82594 \ \}$

```
[n[01]= ConstantsOfMotion [0.3, 0, 2.4, 2.7, 0, 2.1, 7.1, 20]
```

```
Out[81]= \{\lambda \to 1.62165 , \eta \to 24.5772 \}
```

 $|\pi_{[82]}| = \text{KerrNullGeoAngularRoots} [0.8, 0, 14, \pi/2.3, 0, 200, 0, -10]$

```
\label{eq:output} \text{Output} \quad \{\theta_1 \rightarrow 1.36591 \ , \ \theta_2 \rightarrow 1.5708 \ -3.02646 \ i \ , \ \theta_3 \rightarrow 1.5708 \ +3.02646 \ i \ , \ \theta_4 \rightarrow 1.77568 \ \}
```

- $[0.8, 0, 14, \pi/2, 0, 200, 0, -10]$ (*confined within the equatorial plane *)
- $n_{[84]=}$ ConstantsOfMotion [0.8, 0, 14, $\pi/2$, 0, 200, 0, -10]

```
Out[84]= \{\lambda \to -8.39503, \eta \to 0.\}
```

vortical motion: $\theta_1 \le \theta_2 \le \pi/2 \le \theta_3 \le \theta_4$ and is characterized by $\eta \le 0$

- In[85]= KerrNullGeoAngularRoots [0.2, 0, 10, 0.3, 0, -10, 0, 0]
- outes: $\{\theta_1 \rightarrow 0.0739136, \theta_2 \rightarrow 0.3, \theta_3 \rightarrow 2.84159, \theta_4 \rightarrow 3.06768\}$
- In[86]= ConstantsOfMotion [0.2, 0, 10, 0.3, 0, -10, 0, 0]
- Out[86]= { $\lambda \to -0.00436462$, $\eta \to -0.0363076$ }

POLAR MOTION CODE

EXAMPLES OF POLAR MOTION

To analyze polar motion, the command **PolarMotion** is used,

PolarMotion [0.3, 0, 2.4, 4, 0, 2.1, 7.1, -10]["AngularRoots "] $\{\theta_1 \rightarrow 0.664203, \theta_2 \rightarrow 1.5708 - 3.78837 \ i, \theta_3 \rightarrow 1.5708 + 3.78837 \ i, \theta_4 \rightarrow 2.47739 \}$ PolarMotion [0.3, 0, 2.4, 4, 0, 2.1, 7.1, -10] ordinaryFunction [0.3, 0, 2.4, 4, 0, 2.1, 7.1, -10, <<>>] PolarMotion [0.3, 0, 2.4, 4, 0, 2.1, 7.1, -10][r](*to visualize the equation used *)

out[326]= ArcCos [-0.787408 JacobiSN [6.62427 (0.147814 + τ), -0.00127165]]

PolarMotion [0.3, 0, 2.4, 4, 0, 2.1, 7.1, -10]["ConstantsofMotion "]

- $Out[130] = \{ X \to -4.0010, 1 \to 21.2001 \}$
- Out[131]= { $\lambda \to -0.00436462$, $\eta \to -0.0363076$ }
- h[132]= PolarMotion [0.2, 0, 10, 0.3, 0, -10, 0, 0]
- outi32= vorticalFunction [0.2,0,10,0.3,0,-10,0,0,<<>>]
- h[133]= PolarMotion [0.8, 0, 14, $\pi/2$, 0, 200, 0, -10]
- ordinaryEquatorialFunction [0.8,0,14,Pi
 - 2,0,200,0,-10,<<>>]

AZIMUTHAL MOTION CODE

EXAMPLES OF AZIMUTHAL MOTION

```
• In the analysis of Azimuthal motion, the command AzimuthalMotion is used. The code will return
         various cases of azimuthal motion, for instance we denote \eta > 0 with \eta p; \eta < 0 with \eta m and we use
          1,2,3,4to denote the four cases of radial potential roots.
       AzimuthalMotion [0.3, 0, 2.4, 2.7, 0, 2.1, 7.1, 20]["ConstantsofMotion "]
       \{\lambda \to 1.62165, \eta \to 24.5772\}
       AzimuthalMotion [0.3, 0, 2.4, 2.7, 0, 2.1, 7.1, 20]
       φηp1Function [0.3,0,2.4,2.7,0,2.1,7.1,20,<<>>]
      AzimuthalMotion [0.3, 0, 2.4, 2.7, 0, 2.1, 7.1, 20][r](*to visualize the equation used *)
Out325= 1.62165 (-0.47067 + 0.191747 EllipticPi [0.903631,
               JacobiAmplitude [5.2152 (0.240821 + r), -0.00299015 ], -0.00299015 ])+
        0.314485 (1.71069 (0.0149885 - 0.125779 (0.723386 + \tau) - 0.147072
                  EllipticPi [1.1862, JacobiAmplitude [2.70285 (0.723386 + τ), 0.782948], 0.782948])+
            0.197186 (-0.0444135 - 0.165492 (0.723386 + \tau) - 119.438
                  EllipticPi [556.454, JacobiAmplitude [2.70285 (0.723386 + r), 0.782948], 0.782948]))
       KerrNullGeoCOM [0.3, 0, 2.4, 2.7, 0, 2.1, 7.1, 20]
       \{\lambda \rightarrow 1.62165 \ , \ \eta \rightarrow 24.5772 \ \}
       KerrNullGeoRadialRoots [0.3, 0, 2.4, 2.7, 0, 2.1, 7.1, 20]
       \{r_1 \rightarrow -5.99652, r_2 \rightarrow 0.0429647, r_3 \rightarrow 2.45168, r_4 \rightarrow 3.50187\}
       AzimuthalMotion [0.2, 0, 10, 0.3, 0, -10, 0, 0]["ConstantsofMotion "]
       \{\lambda \to -0.00436462, \eta \to -0.0363076\}
       AzimuthalMotion [0.9, 0, 2, 3, 0, -5, 10, 8]
       \phi\etap3Function [0.9,0,2,3,0,-5,10,8,<<>>]
       AzimuthalMotion [0.8, 0, 14, \pi/2.3, 0, 200, 0, -10]
       φηp2Function [0.8,0,14,1.36591,0,200,0,-10,<<>>]
       AzimuthalMotion [0.2, 0, 10, 0.3, 0, -10, 0, 0]
       \phi\etam4Function [0.2,0,10,0.3,0,-10,0,0,<<>>]
       AzimuthalMotion [0.2, 0, 10, 0.3, 0, -10, 0, 0]["ConstantsofMotion "]
      \{\lambda \to -0.00436462, \eta \to -0.0363076\}
M328)= AzimuthalMotion [0.2, 0, 10, 0.3, 0, -10, 0, 0]["RadialRoots "]
Out328]= {r_1 \rightarrow -0.08033 - 0.103099 \ i, r_2 \rightarrow -0.08033 + 0.103099 \ i,
        r_3 \rightarrow 0.08033 - 0.280294 \ i, r_4 \rightarrow 0.08033 + 0.280294 \ i\}
```

TEMPORAL MOTION

EXAMPLES FOR TEMPORAL MOTION

```
• In the analysis of Temporal Motion, the command <u>TemporalMotion</u> is used. The code will also
          return various cases of temporal motion, for instance we denote \eta > 0 with \eta p; \eta < 0 with \eta m and we
          use 1,2,3,4to denote the four cases of radial potential roots.
       TemporalMotion [0.3, 0, 2.4, 2.7, 0, -2.1, 7.1, 20]
       tnp1Function [0.3,0,2.4,2.7,0,-2.1,7.1,20,<<>>]
       TemporalMotion [0.3, 0, 2.4, 2.7, 0, -2.1, 7.1, 20]["RadialRoots "]
       \{r_1 \rightarrow -5.99652, r_2 \rightarrow 0.0429647, r_3 \rightarrow 2.45168, r_4 \rightarrow 3.50187\}
      TemporalMotion [0.3, 0, 2.4, 2.7, 0, -2.1, 7.1, 20][7](*to visualize the equation used*)
Out334 = 1.56816 - 10.4468 (0.723386 - \tau) + 4\tau + \tau
        5.40569 EllipticE [JacobiAmplitude [2.70285 (0.723386 - r), 0.782948], 0.782948]+
        0.09 (-0.083332 +
             57.9466 (EllipticE [JacobiAmplitude [5.2152 (0.240821 + τ), -0.00299015 ], -0.00299015 ]-
                 EllipticF [JacobiAmplitude [5.2152 (0.240821 + t), -0.00299015 ], -0.00299015 ]))+
        2(-0.889569 - 5.99652 (0.723386 - \tau) + 2.23449 EllipticPi [0.285116 ,
                JacobiAmplitude [2.70285 (0.723386 - \tau), 0.782948], 0.782948]) +
        2.09657 (3.34259 (-0.0149885 + 0.125779 (0.723386 - \tau) + 0.147072
                  EllipticPi [1.1862, JacobiAmplitude [2.70285 (0.723386 - τ), 0.782948], 0.782948])+
             0.00908256 (0.0444135 + 0.165492 (0.723386 - \tau) + 119.438 EllipticPi [556.454 ,
                    JacobiAmplitude [2.70285 (0.723386 - τ), 0.782948], 0.782948])) -
         Abs (78.0794 JacobiCN [2.70285 (-0.723386 + τ), 0.782948 ] × JacobiDN [
                  2.70285 (-0.723386 + \tau), 0.782948 ]× JacobiSN [2.70285 (-0.723386 + \tau), 0.782948 ])/
              (8.4482 - 2.40872 \text{ JacobiSN} [2.70285 (-0.723386 + \tau), 0.782948 ]^2) +
             (13.0208 JacobiCN [2.70285 (-0.723386 + τ), 0.782948 ]× JacobiDN [
                  2.70285 (-0.723386 + \tau), 0.782948 ] × JacobiSN [2.70285 (-0.723386 + \tau), 0.782948 ]
                 (0.362974 + 14.4439 \text{ JacobiSN} [2.70285 (-0.723386 + \tau), 0.782948 ]^2))/
              (8.4482 - 2.40872 \text{ JacobiSN} [2.70285 (-0.723386 + \tau), 0.782948 ]^2)^2 / (
          \left(5.99652 + \frac{0.362974 + 14.4439 \text{ JacobiSN } [2.70285 (-0.723386 + \tau), 0.782948 ]^2}{8.4482 - 2.40872 \text{ JacobiSN } [2.70285 (-0.723386 + \tau), 0.782948 ]^2}\right)
       TemporalMotion [0.2, 0, 10, 0.3, 0, -10, 0, 0]
       tnm4Function [0.2,0,10,0.3,0,-10,0,0,<<>>]
       TemporalMotion [0.9, 0, 2, 3, 0, -5, 10, 8]
       tnp3Function [0.9,0,2,3,0,-5,10,8,<<>>]
```

PLOTS OF THE GEODESICS

• NOTE: All Null geodesics that move into the black hole, we terminate them on the event horizon. The black sphere in the plots represents the event horizon.

Case one

```
In[301]:= Module
         {a = 0.3, ts = 0, rs = 2.5, \thetas = 2.6, \phis = 0, prs = 2.7, p\thetas = 7.1, p\phis = 20, r, \theta, \phi, \tau},
         \theta = PolarMotion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis];
          r = RadialMotion [a, ts, rs, \theta s, \phi s, prs, p\theta s, p\phi s];
         \phi = AzimuthalMotion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis];
         Print["r,\theta,\phi=", {RadialMotion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis], PolarMotion [a, ts, rs,
               \thetas, \phis, prs, p\thetas, p\phis], AzimuthalMotion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis]}];
         Show
           ParametricPlot3D [
             r[\tau] \{ Cos[\phi[\tau]] \times Sin[\theta[\tau]], Sin[\phi[\tau]] \times Sin[\theta[\tau]], Cos[\theta[\tau]] \} \}
             \{\tau, 0, Max\tau[a, ts, rs, \theta s, \phi s, prs, p\theta s, p\phi s]\}, PlotStyle \rightarrow Magenta, PlotRange \rightarrow All],
           Graphics3D [{Black, Specularity [.5], Sphere [\{0, 0, 0\}, 1 + \sqrt{1-a^2}]}]
       r, \theta, \phi = \{ case1Function [0.3, 0, 2.5, 2.6, 0, 2.7, 7.1, 20, <<>> \} \}
           φηp1Function [0.3,0,2.5,2.6,0,2.7,7.1,20,<<>>]
                         2
                                      0
                                           -1
```

Out[301]=

```
m_{[302]} Module [{a = 0.3, ts = 0, rs = 2.5, \thetas = 2.6,
```

 ϕ s = 0, prs = -2.7, p θ s = 7.1, p ϕ s = 20, r, θ , ϕ , τ },

 $\theta = PolarMotion [a, ts, rs, \theta s, \phi s, prs, p\theta s, p\phi s];$

r = RadialMotion [a, ts, rs, θ s, ϕ s, prs, p θ s, p ϕ s];

 $\phi = AzimuthalMotion [a, ts, rs, \theta s, \phi s, prs, p\theta s, p\phi s];$

ParametricPlot3D [

 $r[\tau] \{ Cos[\phi[\tau]] \times Sin[\theta[\tau]], Sin[\phi[\tau]] \times Sin[\theta[\tau]], Cos[\theta[\tau]] \} \}$

{ τ , 0, Max τ [a, ts, rs, θ s, ϕ s, prs, p θ s, p ϕ s]}, PlotStyle \rightarrow Magenta , PlotRange \rightarrow All], Graphics3D [{Black, Specularity [.5], Sphere [{0, 0, 0}, 1 + $\sqrt{1 - a^2}$]}]

```
r, \theta, \phi={case1Function [0.3, 0, 2.5, 2.6, 0, -2.7, 7.1, 20, <<>>],
ordinaryFunction [0.3, 0, 2.5, 2.6, 0, -2.7, 7.1, 20, <<>>],
\phi\etap1Function [0.3, 0, 2.5, 2.6, 0, -2.7, 7.1, 20, <<>>]}
```


Out[302]=

case two

Seminar.nb 21

```
Module [\{a = 0, ts = 0, rs = 8, \theta s = \pi/2, \phi s = 0, prs = -2, p\theta s = 0, p\phi s = 0.2, r, \theta, \phi, \tau\},\
  \theta = PolarMotion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis];
  r = RadialMotion [a, ts, rs, \theta s, \phi s, prs, p\theta s, p\phi s];
  \phi = AzimuthalMotion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis];
  Print ["r, \theta, \phi=", {Radial Motion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis], Polar Motion [a, ts, rs,
        \thetas, \phis, prs, p\thetas, p\phis], AzimuthalMotion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis]}];
  Show
    ParametricPlot3D [
     r[\tau] \{ Cos[\phi[\tau]] \times Sin[\theta[\tau]], Sin[\phi[\tau]] \times Sin[\theta[\tau]], Cos[\theta[\tau]] \} \}
     \{\tau,\,0,\,\mathsf{Maxt}[a,\,\mathsf{ts},\,\mathsf{rs},\,\theta\mathsf{s},\,\phi\mathsf{s},\,\mathsf{prs},\,\mathsf{p}\theta\mathsf{s},\,\mathsf{p}\phi\mathsf{s}]\},\,\mathsf{PlotStyle}\,\rightarrow\,\mathsf{Magenta}\,],
   Graphics3D [{Black, Specularity [.5], Sphere [\{0, 0, 0\}, 1 + \sqrt{1-a^2}]}]
r, \theta, \phi = \{ case 2 Function [0, 0, 8, Pi \} \}
2,0,-2,0,0.2,<<>>], ordinarySchwarzchildFunction [0,0,8,Pi
2,0,-2,0,0.2,<<>>], φSchwarzchildFunction [0,0,8,Pi
                                   15
```

```
Module [a = 0.8, ts = 0, rs = 15, \theta s = \pi/2,
          \phis = 0, prs = -312.74, p\thetas = 0, p\phis = -10, r, \theta, \phi, \tau},
      \theta = PolarMotion [a, ts, rs, \theta s, \phi s, prs, p\theta s, p\phi s];
      r = RadialMotion [a, ts, rs, \theta s, \phi s, prs, p\theta s, p\phi s];
       \phi = AzimuthalMotion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis];
      \mathsf{Print}["r,\theta,\phi=",\{\mathsf{RadialMotion}\ [a,ts,rs,\theta s,\phi s,prs,p\theta s,p\phi s],\mathsf{PolarMotion}\ [a,ts,rs,\theta s,\phi s,prs,p\theta s],\mathsf{PolarMotion}\ [a,ts,rs,\theta s,\phi s],\mathsf{PolarMotion}\ [a,ts,rs,\theta s,\phi s],\mathsf{PolarMotion}\ [a,ts,rs,\theta s,\phi s],\mathsf{PolarMotion}\ [a,ts,rs,\theta s,\phi s],\mathsf{PolarMotion}\ [a,ts,rs,\theta s],\mathsf{PolarMotion}\ [a,ts,
                        \thetas, \phis, prs, p\thetas, p\phis], AzimuthalMotion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis]}];
      Show
            ParametricPlot3D [
                 r[\tau] \{ \cos[\phi[\tau]] \times \sin[\theta[\tau]], \sin[\phi[\tau]] \times \sin[\theta[\tau]], \cos[\theta[\tau]] \} \}
                 \{\tau,\,0,\,\mathsf{Maxt}[a,\,\mathsf{ts},\,\mathsf{rs},\,\theta\mathsf{s},\,\phi\mathsf{s},\,\mathsf{prs},\,\mathsf{p}\theta\mathsf{s},\,\mathsf{p}\phi\mathsf{s}]\},\,\mathsf{PlotStyle}\,\rightarrow\,\mathsf{Magenta}\,],
           Graphics3D [{Black, Specularity [.5], Sphere [\{0, 0, 0\}, 1 + \sqrt{1-a^2}]}]
r, \theta, \phi = \{ case 2 Function [0.8, 0, 15, Pi \}
2,0,-312.74,0,-10,<<>>], ordinaryEquatorialFunction [0.8,0,15,Pi
 2,0,-312.74,0,-10,<<>>], φ2EquatorialFunction [0.8,0,15,Pi
 2,0,-312.74,0,-10,<<>>]
                                                                                                                                                                                                                                                           20
     10
                                             0
                                                                                                10
                                                                                                                                                                                                             n
                                                                                                                                                           20
```

```
Module [{a = 0.8, ts = 0, rs = 15, \thetas = \pi/2,
  \phis = 0, prs = 312.74, p\thetas = 0, p\phis = -10, r, \theta, \phi, \tau},
  \theta = PolarMotion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis];
  r = RadialMotion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis];
  \phi = AzimuthalMotion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis];
  Print["r,\theta,\phi=", {RadialMotion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis], PolarMotion [a, ts, rs,
  \thetas, \phis, prs, p\thetas, p\phis], AzimuthalMotion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis]}];
  Show[
  ParametricPlot3D [
    r[r]{Cos[\phi[r]] × Sin[\theta[r]], Sin[\theta[r]] × Sin[\theta[r]], Cos[\theta[r]]},
    {r, 0, Maxr[a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis], PlotStyle \rightarrow Magenta, PlotRange \rightarrow All],
  Graphics3D [{Black, Specularity [.5], Sphere [(0, 0, 0), 1 + \sqrt{1 - a^2}]}]
  ]
  [(*when prs>0, the geodesic goes to infinity without encoutering a turning point*)
  r \theta \phi-(rase2Eunction [0, 8, 0, 15, Pi
```

```
r,θ,φ={case2Function [0.8,0,15,Pi
--
2,0,312.74,0,-10,<<>>], ordinaryEquatorialFunction [0.8,0,15,Pi
```

```
2,0,312.74,0,-10,<<>>], \phi2EquatorialFunction [0.8,0,15,Pi
```

```
2,0,312.74,0,-10,<<>>]
```


case three

0 -1

-2

20

Out[308]

0

10

```
Module [a = 0.2, ts = 0, rs = 5, \theta s = \pi/2, \phi s = 0, prs = -100, p\theta s = 10, p\phi s = 8, r, \theta, \phi, \tau]
  \theta = PolarMotion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis];
 r = RadialMotion [a, ts, rs, \theta s, \phi s, prs, p\theta s, p\phi s];
 \phi = AzimuthalMotion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis];
  Print ["r, \theta, \phi=", {Radial Motion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis], Polar Motion [a, ts, rs,
       θs, φs, prs, pθs, pφs], AzimuthalMotion [a, ts, rs, θs, φs, prs, pθs, pφs]}];
 Show
   ParametricPlot3D [
     r[\tau] \{ \cos[\phi[\tau]] \times \sin[\theta[\tau]], \sin[\phi[\tau]] \times \sin[\theta[\tau]], \cos[\theta[\tau]] \} \}
     \{\tau,\,0,\,\mathsf{Max\tau}[\mathsf{a},\,\mathsf{ts},\,\mathsf{rs},\,\theta\mathsf{s},\,\phi\mathsf{s},\,\mathsf{prs},\,\mathsf{p}\theta\mathsf{s},\,\mathsf{p}\phi\mathsf{s}]\},\,\mathsf{PlotStyle}\,\rightarrow\,\mathsf{Magenta}
     (*, PlotRange →{{-5,5}, {-5,5}}*), PlotRange → All],
   Graphics3D [{Black, Specularity [.5], Sphere [\{0, 0, 0\}, 1 + \sqrt{1-a^2}]}]
r, \theta, \phi = \{ case3Function [0.2, 0, 5, Pi \}
2,0,-100,10,8,<<>>], ordinaryFunction [0.2,0,5,Pi
2,0,-100,10,8,<<>>], φηp3Function [0.2,0,5,Pi
2,0,-100,10,8,<<>>]
                 -2
                          0
                                  2
                                            4
                                                       1.2
                                                         0.2
                                                           -0.8
                                                             -1.8
                                                           1.2
                                                       0.2
                                                    -0.8
                                                -1.8
```

 $\begin{aligned} & \text{Module} \left[\{a = 0.2, \text{ts} = 0, \text{rs} = 5, \theta \text{s} = \pi/2, \phi \text{s} = 0, \text{prs} = 100, \text{p}\theta \text{s} = 10, \text{p}\phi \text{s} = 8, \text{r}, \theta, \phi, \tau \}, \\ & \theta = \text{PolarMotion} [a, \text{ts}, \text{rs}, \theta \text{s}, \phi \text{s}, \text{prs}, \text{p}\theta \text{s}, \text{p}\phi \text{s}]; \\ & r = \text{RadialMotion} [a, \text{ts}, \text{rs}, \theta \text{s}, \phi \text{s}, \text{prs}, \text{p}\theta \text{s}, \text{p}\phi \text{s}]; \\ & \phi = \text{AzimuthalMotion} [a, \text{ts}, \text{rs}, \theta \text{s}, \phi \text{s}, \text{prs}, \text{p}\theta \text{s}, \text{p}\phi \text{s}]; \\ & \text{Print} ["r, \theta, \phi = ", \{\text{RadialMotion} [a, \text{ts}, \text{rs}, \theta, \phi, \sigma, \text{prs}, \text{p}\theta \text{s}, \text{p}\phi \text{s}], \text{PolarMotion} [a, \text{ts}, \text{rs}, \theta \text{s}, \phi \text{s}, \text{prs}, \text{p}\theta \text{s}, \text{p}\phi \text{s}], \text{PolarMotion} [a, \text{ts}, \text{rs}, \theta \text{s}, \phi \text{s}, \text{prs}, \text{p}\theta \text{s}, \text{p}\phi \text{s}], \text{PolarMotion} [a, \text{ts}, \text{rs}, \theta \text{s}, \phi \text{s}, \text{prs}, \text{p}\theta \text{s}, \text{p}\phi \text{s}] \}; \\ & \text{Show} \begin{bmatrix} & \text{ParametricPlot3D} & [& & \\ r[\tau] \{\text{Cos}[\phi[\tau]] \times \text{Sin}[\theta[\tau]], \text{Sin}[\phi[\tau]] \times \text{Sin}[\theta[\tau]], \text{Cos}[\theta[\tau]] \}, \\ \{\tau, 0, \text{Maxt}[a, \text{ts}, \text{rs}, \theta \text{s}, \phi \text{s}, \text{prs}, \text{p}\theta \text{s}, \text{p}\phi \text{s}] \}, \text{PlotStyle} \rightarrow \text{Magenta} \\ (*, \text{PlotRange} \rightarrow \{\{-5, 5\}, \{-5, 5\}, \{-5, 5\}\} \star), \text{PlotRange} \rightarrow \text{All} \end{bmatrix}, \\ & \text{Graphics3D} \left[\left\{ \text{Black}, \text{Specularity} [.5], \text{Sphere} \left[\{0, 0, 0\}, 1 + \sqrt{1 - a^2} \right] \right\} \right] \end{aligned}$

(*when prs>0, the geodesic goes to infinity without encoutering a turning point*)

```
r, θ, φ={case3Function [0.2,0,5,Pi
---
2,0,100,10,8,<<>>], ordinaryFunction [0.2,0,5,Pi
```

```
2,0,100,10,8,<<>>], φηp3Function [0.2,0,5,Pi
```

```
2,0,100,10,8,<<>>]
```

0.000

case four

```
 \begin{array}{ll} \mbox{Module} \left[ \{a=0.2\,,\,ts=0,\,rs=10\,,\,\theta s=0.3\,,\,\phi s=0,\,prs=-10\,,\,p\theta s=0\,,\,p\phi s=0\,,\,r,\,\theta\,,\,\phi,\,\tau\},\\ \theta=\mbox{PolarMotion} \left[a,\,ts\,,\,rs\,,\,\theta s\,,\,\phi s\,,\,prs\,,\,p\theta s\,,p\phi s\right];\\ r=\mbox{RadialMotion} \left[a,\,ts\,,\,rs\,,\,\theta s\,,\,\phi s\,,\,prs\,,\,p\theta s\,,p\phi s\right];\\ \phi=\mbox{AzimuthalMotion} \left[a,\,ts\,,\,rs\,,\,\theta s\,,\,\phi s\,,\,prs\,,\,p\theta s\,,p\phi s\,,\rho\phi s\,,\rho\sigma s\,,
```

r,θ,φ={case4Function [0.2,0,10,0.3,0,-10,0,0,<<>>],

vorticalFunction [0.2,0,10,0.3,0,-10,0,0,<<>>], φηm4Function [0.2,0,10,0.3,0,-10,0,0,<<>>]}

Seminar.nb | 29

 $\begin{aligned} & \text{Module} \left[\{a = 0.2, \text{ts} = 0, \text{rs} = 10, \theta \text{s} = 0.3, \phi \text{s} = 0, \text{prs} = 10, \text{p}\theta \text{s} = 0, \text{p}\phi \text{s} = 0, \text{r}, \theta, \phi, \tau \}, \\ & \theta = \text{PolarMotion} [a, \text{ts}, \text{rs}, \theta \text{s}, \phi \text{s}, \text{prs}, \text{p}\theta \text{s}, \text{p}\phi \text{s}]; \\ & \text{r} = \text{RadialMotion} [a, \text{ts}, \text{rs}, \theta \text{s}, \phi \text{s}, \text{prs}, \text{p}\theta \text{s}, \text{p}\phi \text{s}]; \\ & \phi = \text{AzimuthalMotion} [a, \text{ts}, \text{rs}, \theta \text{s}, \phi \text{s}, \text{prs}, \text{p}\theta \text{s}, \text{p}\phi \text{s}]; \\ & \text{Print} ["r, \theta, \phi = ", \{\text{RadialMotion} [a, \text{ts}, \text{rs}, \theta \text{s}, \phi \text{s}, \text{prs}, \text{p}\theta \text{s}, \text{p}\phi \text{s}], \text{PolarMotion} [a, \text{ts}, \text{rs}, \theta \text{s}, \phi \text{s}, \text{prs}, \text{p}\theta \text{s}, \text{p}\phi \text{s}], \text{PolarMotion} [a, \text{ts}, \text{rs}, \theta \text{s}, \phi \text{s}, \text{prs}, \text{p}\theta \text{s}, \text{p}\phi \text{s}], \text{PolarMotion} [a, \text{ts}, \text{rs}, \theta \text{s}, \phi \text{s}, \text{prs}, \text{p}\theta \text{s}, \text{p}\phi \text{s}], \text{PolarMotion} [a, \text{ts}, \text{rs}, \theta \text{s}, \phi \text{s}, \text{prs}, \text{p}\theta \text{s}, \text{p}\phi \text{s}] \}; \\ & \text{Show} \left[\\ & \text{ParametricPlot3D} \left[\\ & \text{r}[\tau] \{\text{Cos}[\phi[\tau]] \times \text{Sin}[\theta[\tau]], \text{Sin}[\phi[\tau]] \times \text{Sin}[\theta[\tau]], \text{Cos}[\phi[\tau]] \}, \\ & \{\tau, 0, \text{Maxr}[a, \text{ts}, \text{rs}, \theta \text{s}, \phi \text{s}, \text{prs}, \text{p}\theta \text{s}, \text{p}\phi \text{s}] \}, \text{PlotStyle} \rightarrow \text{Magenta}, \text{PlotRange} \rightarrow \text{All}], \\ & \text{Graphics3D} \left[\left\{ \text{Black}, \text{Specularity} [.5], \text{Sphere} \left[\{0, 0, 0\}, 1 + \sqrt{1 - a^2} \right] \right\} \right] \\ \end{array} \right]$

](*when prs>0, the geodesic goes to infinity without encoutering a turning point *) r, θ , ϕ ={case4Function [0.2,0,10,0.3,0,10,0,0,...>],

vorticalFunction [0.2,0,10,0.3,0,10,0,0,<<>>], *φη*m4Function [0.2,0,10,0.3,0,10,0,0,<<>>]}

Spherical geodesics

2

΄Ο_Υ

-2

Out[315]=

z 0

-2

0

х

 $h_{[316]=}$ Module {a = 0.5`32, ts = 0, rs = 2.8832177419263525`32,

 θ s = π , ϕ s = 0, prs = 0, p θ s = 20, p ϕ s = 10, r, θ , ϕ , τ },

 θ = PolarMotion [a, ts, rs, θ s, ϕ s, prs, p θ s, p ϕ s];

r = RadialMotion [a, ts, rs, θ s, ϕ s, prs, p θ s, p ϕ s];

 ϕ = AzimuthalMotion [a, ts, rs, θ s, ϕ s, prs, p θ s, p ϕ s]; Show[ParametricPlot3D [

- $r[\tau] \{ Cos[\phi[\tau]] \times Sin[\theta[\tau]], Sin[\phi[\tau]] \times Sin[\theta[\tau]], Cos[\theta[\tau]] \},$
- $\{\tau,\,0\,,\,15*\mathsf{Maxt}\,[\mathsf{a}\,,\,\mathsf{ts}\,,\,\mathsf{rs}\,,\,\theta\mathsf{s}\,,\,\phi\mathsf{s}\,,\,\mathsf{prs}\,,\,\mathsf{p}\theta\mathsf{s}\,,\,\mathsf{p}\phi\mathsf{s}\,]\},$
- PlotStyle \rightarrow Magenta , PlotRange \rightarrow All], Graphics3D

 $\left\{ \text{Black , Specularity [.5], Sphere} \left[\{0, 0, 0\}, 1 + \sqrt{1 - a^2} \right] \right\} \right], \text{ AxesLabel } \rightarrow \{"x", "y", "z"\} \right]$

Out[316]

-2

4

z 0

-2

0 x

2

 $\begin{aligned} & \text{Module}\left[\left\{a=0.8\ 32\ ,\ ts=0,\ rs=2\left(1+\cos\left[4\ \frac{\pi}{3}+\frac{2}{3}\ \text{ArcCos}\left[0.8\ 32\ \right]\right]\right),\\ & \theta s=\pi/2,\ \phi s=0.5\ 32\ ,\ prs=0,\ p\theta s=0,\ p\phi s=10\ ,\ r,\ \theta,\ \phi,\ \tau\right\},\\ & \theta=\text{PolarMotion}\ [a,\ ts,\ rs,\ \theta s,\ \phi s,\ prs,\ p\theta s,\ p\phi s];\\ & r=\text{RadialMotion}\ [a,\ ts,\ rs,\ \theta s,\ \phi s,\ prs,\ p\theta s,\ p\phi s];\\ & \phi=\text{AzimuthalMotion}\ [a,\ ts,\ rs,\ \theta s,\ \phi s,\ prs,\ p\theta s,\ p\phi s];\\ & \text{Show}\left[\text{ParametricPlot3D}\ [\\ & r[\tau]\{\text{Cos}[\phi[\tau]]\times\text{Sin}[\theta[\tau]],\ \text{Sin}[\phi[\tau]]\times\text{Sin}[\theta[\tau]],\ \text{Cos}[\theta[\tau]]\},\end{aligned}$

{ τ , 0, 2 Max τ [a, ts, rs, θ s, ϕ s, prs, p θ s, p ϕ s]}, PlotStyle \rightarrow Magenta , PlotRange \rightarrow All], Graphics3D [{Black , Specularity [.5], Sphere [{0, 0, 0}, 1 + $\sqrt{1 - a^2}$]}], AxesLabel \rightarrow {"x", "y", "z"}]

Out[318]=


```
Module [a = 0, ts = 0, rs = 3, \theta s = \pi/2, \phi s = 0.532, prs = 0, p\theta s = 0, p\phi s = 10, r, \theta, \phi, \tau],
 \theta = PolarMotion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis];
 r = RadialMotion [a, ts, rs, \theta s, \phi s, prs, p\theta s, p\phi s];
 \phi = AzimuthalMotion [a, ts, rs, \thetas, \phis, prs, p\thetas, p\phis];
 Show ParametricPlot3D [
    r[\tau] \{ Cos[\phi[\tau]] \times Sin[\theta[\tau]], Sin[\phi[\tau]] \times Sin[\theta[\tau]], Cos[\theta[\tau]] \} \}
    \{\tau, 0, 2 \text{ Maxr}[a, ts, rs, \theta s, \phi s, prs, p\theta s, p\phi s]\}, PlotStyle \rightarrow Magenta, PlotRange \rightarrow All],
   Graphics3D [{Black, Specularity [.5], Sphere [\{0, 0, 0\}, 1 + \sqrt{1-a^2}]}],
   AxesLabel \rightarrow {"x", "y", "z"}
(*Schwarzschild photon sphere *)
                                 -2
                                             х
                                           0
          у
                                                      2
            0
```

Out[319]=

• These have been examples of the null geodesics the users can study and they can input different values of their choice to study more properties.

CONCLUSION

- We have formulated the code such that the user only needs a given set of initial position and momentum.
- Given the initial position and momenta, the user will be able to study various properties of spherical and non spherical null geodesics in Kerr and Schwarzschild space-time.
- We hope that this work together with other works in the literature will enable us to understand the nature of black holes in more detailed ways.
- NOTE: We have not yet made the code publicly available as we are still concluding of various tests

THANK YOU! Obrigada! Shukrani! Mbuya Mono!