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1 Introduction

In canonical formulation of general relativity, geometry of space-time is given
in terms of fields on spatial slices, ¥, whose geometry is encoded by a three
metric hgyp, presenting the configuration variables. The space-time geometry
is generally covariant, which is expressed by presence of constraint on the
fields. These constraints are diffeomorphism and Hamiltonian constraints:
More precisely, the diffeomorphism constraints generate deformation of spa-
tial slices or coordinate changes. So, these constraints give the independence
of the spatial geometry from the choice of space coordinates. The Hamilto-
nian constraints give the general covariance of space-time geometry for the
time coordinates. It should be noted that, in this formulation, there is no
absolute time, neither there is Hamiltonian generating evolution, just there
is Hamiltonian constraint. From satisfying the Hamiltonian constraint, it is
encoded the correlations between the physical fields of gravity and matter
such that, the evolution in this framework is relational. The reproduction
of a space-time metric in a coordinate-dependent way then requires one to
choose a gauge and to compute the transformation in gauge parameters
(including the coordinate) generated by the constraints.

It is quite often the case that theories of interest in modern physics are
formulated as constrained systems. In particular, quantum gravity within
canonical approach combines ideas from the constrained Hamiltonian sys-
tems for general relativity and Dirac’s approach for quantization of these
constrained systems. Dirac’s theory of constrained Hamiltonian systems
constitutes primary and secondary constraints, first-class and second-class
constraints, and Dirac brackets. In quantum theory, the operator versions
of first-class constraints become supplementary conditions on the wave func-
tion, provided these constraints are consistent with one another and with the
Schrodinger equation. On the other hand, second-class constraints, become
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instead equations between quantum operators. Moreover, commutation re-
lations are taken to correspond to Dirac-bracket relations, provided it is
possible to find an irreducible representation of the Dirac-brackets algebra.

Thus we begin herein this chapter, by presenting Dirac’s theory of con-
strained Hamiltonian systems, with emphasis on its application to canonical
theory of gravity.

2 Lagrangian systems

A gauge theory may be thought of as one in which the dynamical variables
are specified with respect to a “reference frame” whose choice is arbitrary at
every instant of time. The physically important variables are those that are
independent of the choice of the local reference frame. A transformation of
the variables induced by a change in the arbitrary reference frame is called a
gauge transformation. Physical variables (say “observables”) are then said
to be gauge invariant. We will see, in this chapter, that a gauge system is
always a constrained Hamiltonian system. Therefore, we intend to study
very briefly herein this chapter, the dynamics of constrained Hamiltonian
system.

2.1 Phase space

A phase space is a space in which all possible states of a system are repre-
sented, with each possible state of the system corresponding to one unique
point in the phase space. In a phase space, every degree of freedom or pa-
rameter of the system is represented as an axis of a multidimensional space;
a one-dimensional system is called a phase line, while a two-dimensional
system is called a phase plane. Furthermore, a phase space may contain
very many dimensions. For instance, a gas containing many molecules may
require a separate dimension for each particle’s x, y and z positions and
momenta as well as any number of other properties.

In classical mechanics the phase space coordinates are the generalized
coordinates ¢* and their conjugate generalized momenta p;. The motion
of an ensemble of systems in this space is studied by classical statistical
mechanics. The local density of points in such systems obeys Liouville’s
Theorem, and so can be taken as constant. Within the context of a model
system in classical mechanics, the phase space coordinates of the system
at any given time are composed of all of the system’s dynamical variables.
Because of this, it is possible to calculate the state of the system at any
given time in the future or the past, through integration of Hamilton’s or
Lagrange’s equations of motion.

In quantum mechanics, the coordinates p and ¢ of phase space normally
become hermitian operators in a Hilbert space. But they may alternatively
retain their classical interpretation, provided functions of them compose in
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novel algebraic ways (through Groenewold’s star product), consistent with
the uncertainty principle of quantum mechanics. Every quantum mechan-
ical observable corresponds to a unique function or distribution on phase
space, and vice versa. Expectation values in phase-space quantization are
obtained isomorphically to tracing operator observables with the density
matrix in Hilbert space: they are obtained by phase-space integrals of ob-
servables, with the Wigner quasi-probability distribution effectively serving
as a measure.

Thus, by expressing quantum mechanics in phase space (the same ambit
as for classical mechanics), the Weyl map facilitates recognition of quantum
mechanics as a deformation (generalization) of classical mechanics, with de-
formation parameter //S, where S is the action of the relevant process.
(Other familiar deformations in physics involve the deformation of classical
Newtonian into relativistic mechanics, with deformation parameter v/c; or
the deformation of Newtonian gravity into General Relativity, with defor-
mation parameter Scwarzschild-radius/characteristic-dimension.)

Classical expressions, observables, and operations (such as Poisson brack-
ets) are modified by A-dependent quantum corrections, as the conventional
commutative multiplication applying in classical mechanics is generalized to
the noncommutative star-multiplication characterizing quantum mechanics
and underlying its uncertainty principle.

2.2 The Lagrangian formalism

The usual procedure to determine the dynamics of a physical system with
the Lagrangian L(q’, ¢*) follows an action principle. For a system of (finite)
n configuration degrees of freedom ¢’, where i = 1,2, ...,n, the generic first-
order action reads

Slg'(t)] = /L(q",qi)dt. (2.1)

By using the usual variational techniques for the (stationary) action (2.1),
the Euler-Lagrange equations is derived:

i oL _ oL
dt 0¢*  0q*

= 0. (2.2)

By expanding Eq. (2.2) we obtain a second order equation of motion:

. 9’°L . 0L
Wi T, 2.3
]q + 8q7’5q3q aqz ( )
in which we have defined the matrix Wj; as
2
L
Wi = 9 . (2.4)

9¢'0¢7
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In general, a complete set of second-order equations of motion, coupled for all
the n variables ¢, exists only if the matrix Wi; is non-degenerate. Then, at
a given time, ¢/ are uniquely determined by the positions and the velocities
at that time; in other words, we can invert the matrix W;; and obtain an
explicit form for the equation of motion (2.3) as

(2.5)

i = (Wil)*(aL oL ’“)

¢ 0gog?

In this case, det(W;;) does not vanish. If, on the other hand, the matrix W;;
is not invertible, i.e. det(W;;) = 0, then, ¢’ will not be uniquely determined
by the positions and velocities, and the solution of (2.3) can contain arbitrary
functions of time; such a system is said to be gauge invariant. Therefore, this
is a key property of a gauge theory that the general solution of the equations
of motion contains arbitrary functions of time, where the Lagrangian of the
system is singular:

9L
3 The Hamiltonian formulation

In Hamiltonian formulation, constraints can arise similar to the one we dis-
cussed previously in Lagrangian formulation. The departing point for the
Hamiltonian formalism is to define the canonical momenta p;(¢’, ¢*) by

0L

Using this relation in Eq. (2.4) we obtain W;; = dp;/8¢’. Therefore, the re-
lation (3.1) indicates n independent variables for p;s only if Wj; is invertible,
such that one can at least locally solve for the ¢’.

If the matrix W;; is not invertible, then there is no unique solution of
Hamilton’s equations of motion expressing the velocities in terms of the
canonical coordinates ¢' and conjugate momenta p; (i.e. det(W;;) = 0). In
that case, there exists certain relations connecting the momentum variables,
of the type

¢S(qi,pj) = 0. (3.2)

The ¢’s and p’s are the dynamical variables of the Hamiltonian theory which
are connected by the so-called primary constraints (3.2) of the Hamilto-
nian formalism. This indicates that, the map (¢*,4") — (¢',p;) (which is
a one-to-one transformation of variables on the phase space, in the uncon-
strained case) maps the unconstrained phase space with coordinates (qi, qi)
to the primary constraint surface r : ws(qi,pj) = 0 of all points obtained
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as (qi,pj(q, q)) Notice that, the unconstrained phase space of all (¢’, "),

locally, has a complete set of coordinates given by (qi, Dj, ws), however, glob-

ally, it is not straightforward to find the explicit expressions for the ;.
Let us consider the Legendre transformation

on the constrained manifold given by Eq. (3.2). It is seen that the relation for
H in Eq. (3.3) refers to the time derivatives ¢’ rather than only to momenta
pj. Nevertheless, in order to H to be the Hamiltonian of a constrained
system, the function H must be only a function of ¢* and pj; since in the
constrained case, relation (3.1) is not invertible, one cannot replace all ¢ in
(3.3) by p;, hence, no phase-space Hamiltonian as H(q,p) would exist.

On the other hand, the Hamiltonian H must be always a well-defined
functional of ¢’ and pj, that is, by varying the ¢* while pj is fixed, the right-
hand-side of Eq. (3.3) does not change. Therefore, the function H(g',p;) is
well-defined. The variation of right-hand-side of Eq. (3.3) reads

. oL .
_ *1 L 2
0H = ¢"dp; g 0q" . (3.4)
This relation shows that, variation of H involves only the variation of the
¢’s and that of the p’s; it does not involve the variation of the velocities
¢’s. For a general variation of H(q', p;) on the momentum phase space, we
obtain

OH _, O0OH
0H = -0q" op; . 3.5
g 00 t 5,7 (3.5)
By combining Eqgs. (3.4) and (3.5) we find the equation
0H 0L ; 0H B
<0qi+8qi> o +<8pi_q>5pz_o’ (39)

for H(q',p;) for any variation (d¢’,dp;) tangent to the primary constraint
surface. Eq. (3.6) shows that the vector

OH 0L OH X
V = 4+ — — — 3.7
<6q1+8q2’api q)’ (3.7)
which satisfies the condition
5qi -
v-[(spzl_o, (3.8)

is normal to the constrained surface (3.2). Let us assume the surface (3.2) as
s = 0 where s = 1, ..., m (indicating to m independent constrained relations
of this type), a basis of its normal space is given by

_ (v, 0w,
= (G ) (39
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which is the gradients of all the primary constraint functions. Thus, for
some coefficients A* (which might be functionals on phase space) we have
V =3, Av,. Then, using this relation, together with Egs. (3.7) and (3.9)
we can derive the Hamiltonian equations of motion

o= -\ 3.10
. 0L OH 0y,
Pi= 55 =~ TN ag (3.11)

By a comparison to the Hamiltonian equations of motion of unconstrained
systems, we can define a more general definition for the Hamiltonian of the
system as

Htotal - H - )\31/15 . (312)

In this case, we can rewrite the Hamiltonian equations of motion, in terms
of the total Hamiltonian of the system, as

aHtotal . 8Htota1

LR — - 3.13
8pZ I pZ 8q7' 9 ( )

describing how the variables ¢* and p; vary in time, but, this equations
involve unknown coeflicients A\*. Notice that, the ‘weak equality’ in equations
above denotes an identity up to terms that vanish on the constraint surface.

Since terms A®i; in the total Hamiltonian vanish on the constraint sur-
face, the value of the Hamiltonian does not change in the presence of the
primary constraints, and is independent of A\*. However, the evolution that
Hamiltonian generates, which depends on derivatives of 1, may not being
independent of coefficients A\*, if derivatives of 95 do not vanish. In order
to investigate the role of A* on the evolution equations, it is convenient to
introduce a certain formalism, namely the Poisson bracket formalism, which
enables us to rewrite our equations briefly.

3.1 Poisson brackets

The Poisson bracket is an important binary operation in Hamiltonian me-
chanics, playing a central role in Hamilton’s equations of motion, which
govern the time-evolution of a Hamiltonian dynamical system. In a more
general sense, the Poisson bracket is used to define a Poisson algebra, of
which the algebra of functions on a Poisson manifold is a special case.
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Definition. In canonical coordinates (¢*,p;), on the phase space, given two
functions f(p, q), and g(p, q), the Poisson bracket is defined as

_ N~ (9599 9f 9
{f,g} = Z(aqi 3 . aqi)’ (3.14)

=i

for a system with finitely many degrees of freedom.

. v

The Poisson brackets have certain properties as following:

(i) They are antisymmetric in f and g:
{f,9y = 9. 1}
(ii) They are linear in both entries:
{1+ 2 gy = {5, 9F +{/fes g} -
(iii) They have the (Leibniz’) product law

{f1f27 g} = fl{f27 g}+{fla g}f? .

also known as the “Poisson property”.

(iv) They follow the Jacobi identity:

{f: {g.h}} +H{g, {h. 3} +{h, {f,9}} = 0.

If the Poisson bracket of f and g vanishes ({f,g} = 0), then f and g
are said to be in mutual involution, and the operations of taking the
Poisson bracket with respect to f and with respect to g commute.

With the help of Poisson brackets, we can now rewrite the equations of
motion (3.13) as

' ~ {d', Hiot} pi ~ {pi, Hiot} (3.15)
and for any arbitrary phase-space function F(¢’, pj), we can write
F ~ {F, Hy} . (3.16)

This equation indicates that the total Hamiltonian Hyu, generates the dy-
namical flow of the phase-space variables in time.

From the conditions (i) and (iii), the Poisson bracket can be always
expressed as

{f.g} = PY(0:/)(959) , (3.17)
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indicating that the Poisson structure can be captured by a contravariant
2-tensor (the so-called Poisson tensor), or a bivector P%. Moreover, from
condition (iv), the Jacobi identity, we have that P* must satisfy

emPPo,PH = 0. (3.18)

In other words, it can be said that, any 2-tensor satisfying the condition
(3.18) defines a Poisson structure (3.17).

A Poisson tensor P“ may have an inverse which can be donated by
Qij == (P71);;. The antisymmetry of tensors in Poisson geometry introduces
an ambiguity, in lowering or raising the indices, which does not exist for
Riemannian geometry; in Riemannian geometry, taking the inverse metric
agrees with raising the indices of the metric by its inverse, however, this is
not the case in Poisson geometry; a non-degenerate Poisson tensor defines a
bijection (known as ‘musical isomorphism’):

Pt T*M — TM

o — Pa; (3.19)

which maps the co-tangent space to the tangent space of a manifold M,
raising indices by contraction with P¥. Moreover, the inverse of the bijection
P! defines a map Q° = P! such that

O TM —TM ,
vt —s (P);jlvj = Q07 (3.20)
lowering indices. Now, using tensor products one can lower or raise the
indices of tensors of arbitrary degree; for example, we can lower the indices
of P using pi

—1 —1 —1 _
(P (PP ) uPH = 6P ) = —(P iy = —Qi5. (3.21)

This indicates that, in Poisson geometry, taking the inverse tensor agrees
with raising the indices of the tensor by its inverse, only up to an opposite
sign. Therefore, we do not follow the convention of using the same letter
for the tensor and its inverse, as we would do for a metric, but rather, keep
separate symbols P¥ and Q5.

Invertibility is not a general property of Poisson tensors. Nevertheless,
the non-degenerate case with an existing inverse occurs often for Poisson
tensors. This leads to several special properties, for example, if the inverse
Q;; of P exists, providing an antisymmetric covariant 2-tensor, it is called
a symplectic form (see next section).
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3.2 Symplectic geometry

Symplectic manifolds arise naturally in abstract formulations of classical
mechanics as the cotangent bundles of manifolds, e.g., in the Hamiltonian
formulation of classical mechanics, which provides one of the major mo-
tivations for the field: The set of all possible configurations of a system
is modeled as a manifold, and this manifold’s cotangent bundle describes
the phase space of the system. The study of symplectic manifolds is called
symplectic geometry or symplectic topology.

Definition. A symplectic manifold is a smooth manifold M, equipped with
a closed non-degenerate differential 2-form €, called the symplectic form;
this manifold is donated by (M, ). In other words, assigning a symplectic
form  to a manifold M is referred to as giving M a symplectic structure.

The ‘non-degeneracy’ condition means that for all p € M we have the prop-
erty that there does not exist non-zero X € T,M such that Q(X,Y) =0
for all Y € T, M. The ‘skew-symmetric’ condition means that for all p € M
we have Q(X,Y) = —Q(Y, X) for all X,Y € T,M. Recall that in odd di-
mensions antisymmetric matrices are not invertible. Since €2 is a differential
two-form, the skew-symmetric condition implies that M has even dimen-
sion. The ‘closed condition’ means that the exterior derivative of 2, namely
dS2, is identically zero.

Definition. A diffeomorphism between two symplectic manifolds f :
(M, Q) — (N, Q) is called symplectomorphism, if

f*QI — 97

where f* is the pullback of f. The symplectic diffeomorphisms from M to
M are a (pseudo-)group, called the symplectomorphism group (see below).

J

The infinitesimal version of symplectomorphisms give the symplectic vector
fields. A vector field X € I'>°(T'M) is called symplectic, if

LxQ = 0.

Also, X is symplectic, iff the flow ¢ : M — M of X is symplectic for
every t. These vector fields build a Lie-subalgebra of I'*°(T'M). Examples
of symplectomorphisms include the canonical transformations of classical
mechanics and theoretical physics, the flow associated to any Hamiltonian
function, the map on cotangent bundles induced by any diffeomorphism
of manifolds, and the coadjoint action of an element of a Lie group on a
coadjoint orbit.
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For a Poisson tensor P¥ the Jacobi identity (3.18) can be written as
P9 PR+ Prig Pl Plig PR =0 . (3.22)
Moreover, due to the inverse relationship between two tensors P¥ and Qj,
we have that Qijf)kpﬂ = —leainj; Using this in Eq. (3.22) we obtain

P (Om Qs — On + ) = P (), = 0, (3.23)

mnk

which implies that the inverse of an invertible Poisson tensor is always a
closed 2-form. Because of invertibility it is also non-degenerate. Therefore,
the 2-form €2;; is a symplectic form, and the Poisson structure (M,P) on a
manifold M with an invertible Poisson tensor is equivalent to a symplectic
structure (M, €2).

s )
Definition. Given a Poisson tensor, we associate the Hamiltonian vector
field Xy to any function f on the Poisson manifold by

X;: PUf = —PY(8,1)0; .

In terms of the Poisson bracket, one can write X; = {-, f} as the action of
the vector field on functions, to be inserted for the ‘dot’.

J

(In Riemannian geometry, an analogous construction provides the normal
vector to the surface given by f = const.) The Poisson bracket itself can be
written in terms of Hamiltonian vector fields and the symplectic form:

Q(Xf,Xg) = QijPikPﬂc‘?kfazg = _Pkiakfaig = _{f7g}' (3'24)

The Hamiltonian vector field can be interpreted as the phase-space direction
of change corresponding to the function f; for f = p we have X, = 9/0,.
When f is one of the canonical coordinates, its Hamiltonian vector field
is along its canonical momentum. In this sense, the Hamiltonian vector
field generalizes the notion of momentum to arbitrary phase-space func-

tions. Integrating the Hamiltonian vector field X; to a 1-parameter family

of diffeomorphisms, we obtain the Hamiltonian flow <I>£f ) generated by f.

The dynamical flow of a canonical system is generated by the Hamiltonian
function on phase space.

Definition. A non-invertible closed 2-form is called a presymplectic form;
this provides the manifold on which it is defined with presymplectic geome-
try. Notice that, the presymplectic geometry can constitute of non-invertible
Poisson tensors, providing a Poisson geometry, but, such geometry does not
have an equivalent symplectic formulation.
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Consider a 2-form ();; defined as

Q:TM — T°M

’Ui — Qijvj .
Now, the kernel Ker(£2) can be defined as,
Ker(Q) = {v' € TM : Q07 =0} . (3.25)

Therefore, these definitions imply that, a presymplectic form (2;; has a kernel
C € TM of vector fields v* satisfying Q;;07 = 0.

The vector fields v/ define a flow on phase space, which can be factored
out by identifying all points on orbits of the flow. The resulting factor
space is symplectic: every vector field in the kernel of €);; is factored out.
In this way, a reduced symplectic geometry can be associated with any
presymplectic geometry.

Definition. Given a Poisson tensor P, a Casimir function is defined as an
element C! € P such that

{C1,f} = PY@CT)(9;f) =0. (3.26)

Therefore, using (3.26) we can show that for any Casimir function C7 there
exists a one-form dCT := (8;C1)9; such that P*(dCT) = P¥(9;C1)9; = 0
which is a zero vector field. Thus, the one-forms dC! are in the kernel of
P,

3.3 Constraints on symplectic manifolds

Consider a symplectic manifold M, with symplectic form (2;; and Poisson
tensor P¥ with a smooth Hamiltonian over it (for field theories, M would
be infinite-dimensional). If we constrain the symplectic structure (M, Q) to
a subset C defined by the vanishing of constraint functions C”:

cl ~ o0,

there are different possibilities for symplectic properties of the subset C.
These properties are mainly determined by the Hamiltonian vector fields of
the constraints (which are assumed to be non-vanishing in the neighborhood
of the constraint surface):
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Definition. We call a constraint C!, first class with respect to all con-
straints if its Hamiltonian vector field is everywhere tangent to the con-
straint surface C. We call it second class, if its Hamiltonian vector field is
nowhere tangent to the constraint surface. Following the definition of the
Hamiltonian vector field, this is equivalent to saying that, for all constraints
C” on the constraint surface

{¢',c’y =0, (3.27)

if the constraint CT is first class; it vanishes nowhere on the constraint
surface if C! is second class. (No condition is posed for the behavior of
these Poisson brackets off the constraint surface.)

v

In summary, in a constrained Hamiltonian system, a dynamical quantity
is called a first class constraint if its Poisson bracket with all the other
constraints vanishes on the constraint surface (the surface implicitly defined
by the simultaneous vanishing of all the constraints). The surface is called a
first-class constraint surface if all constraints defining it are first class, and
a second-class constraint surface if all constraints are second class.

We can equip the constraint surface with a presymplectic form € by
pulling back the symplectic form to it. If

t: C— M
Y — ' (3.28)

is the embedding of the constraint surface in M, we write

Q = ./, (3.29)
so that
_ ox' oI
Qg = Qi—— . 3.30
B J 8y0‘ 8y5 ( )

Notice that we cannot directly equip constraint surface with a Poisson struc-
ture, since Poisson tensor, being contravariant, cannot be pulled back. If
one of the constraints is first class, say C, the presymplectic form is degen-
erate: its Hamiltonian vector field X ZC is tangent to the constraint surface
and thus defines a vector field X® on it by simple restriction. So that, by
using the definition of Hamiltonian vector fields, we have

QusX? = (XL = *(8:0) = 0. (3.31)

Only if all constraints are second class, does a symplectic structure result
on the constraint surface. In this case, the constraint surface can be used
directly, as the phase space of the reduced system where the constraints are
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solved. If there are first class constraints, their Hamiltonian flow must be
factored out to obtain the reduced phase space as the factor space of the
presymplectic constraint surface by the Hamiltonian flow. Physically, this
flow is the gauge flow generated by the constraints.

3.3.1 Dirac brackets

If one does not solve all the constraints, when using the Hamiltonian flows
of phase space functions, most importantly the dynamical flow generated by
the Hamiltonian, one must be careful that they do not leave the constraint
surface. The Dirac bracket provides a modification to the Poisson brackets
so as to ensure that the Hamiltonian flow generated by the old constraints
with respect to the new Poisson structure is tangent to the constraint sur-
face. More precisely, the two-form implied from the Dirac bracket is the
restriction of the symplectic form to the constraint surface in phase space.

N

Definition. The Dirac bracket is defined as

{f,9bp = {f.9} =D (/.Y ({Ch, ¢’} H{C g}, (3.32)
IJ

where the double sum is taken for all second-class constraints, for which the
matrix inverse of {C!, 0”7} is guaranteed to exist.

J

For any second class constraint C¥, using the definition of the Dirac bracket
(3.32), we find that

(1,5 = {1,075} =D {107 ({1,077 ¢ ¥y =0, (3.33)
1J

which indicates that, the flow generated by the second class constraint van-
ishes and hence, it does not leave the constraint surface. Therefore, in using
the Dirac bracket, only the flow of first class constraints need to be con-
sidered. Indeed, since the matrix {C?,C”} is not invertible in the presence
of the first class constraints, Dirac bracket cannot be removed in a similar
way as mentioned for the second class constraints. In this case, to obtain
the phase space with symplectic structure, the flows generated by first-class
constraints must be factored out.

3.3.2 Constraint algebras

In addition to the primary constraints, involved in the total Hamiltonian
(3.12), there are further equations to be satisfied by initial values: Consis-
tency conditions are required because the time derivative of the primary
constraints s, like the constraints themselves, must vanish at all time:
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therefore, using (3.16) we can write

¢S ~ {ZbS?H}_At{QpS)qbt} = {¢S;H}_Atcst = 0. (334)

In this way, the structure of the constraint system is determined by the
matrix Cg = {15, ¢} introduced here: if det(Cy) # 0, no further con-
straints result and we can fulfill the consistency condition (3.34) by solving
them for all A. If det(Cst) = 0, not all \! can be determined to solve the
consistency conditions completely. In this case, (3.34) implies secondary
constraints which follow from the equations of motion, rather than from the
basic definition of momenta as the primary constraints.

e A
Definition. For any zero-eigenvector Z? of the primary constraint matrix
Z5Cs =0, secondary constraints in general take the form

ZH{ys, H} = 0. (3.35)

If a non-trivial zero-eigenvector Z7 exists, 1, = 0 is preserved in time only
if (3.35) is satisfied.

3.3.3 Gauge transformation

First class constraints generate gauge transformations. For any phase space
function F, defined for any first class constraint Cs, the infinitesimal map-

ping
F(q,p) — F(q.p) + 0 F(q,p) == F(q,p)+ {F.eCy} (3.36)

maps solutions to the constraints and equations of motion into other solu-
tions: under this mapping, (5§S)Ct ~ 0= 5£S)H . Interpreting transforma-
tions (3.36) as gauge means that we do not consider solutions mapped to
each other by the Hamiltonian flow of first class constraints as physically
distinct. Gauge transformations map different mathematical solutions into
each other, but they are interpreted merely as different representations of
the same physical solution.

Definition. For any phase space function f, if f has a complete vanishing
Poisson bracket with all first-class constraints, it is called a complete (or
Dirac) observable.

In order to have a well-defined theory, with unambiguous physical predic-
tions, the infinitesimal flow { f, C's} only changes the mathematical represen-
tation but does not change the physics of the observable information. The
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change of f is just a gauge transformation without affecting the physical
state.

In summary, in totally constrained systems, constraints play several roles
as following:

e they constrain allowed field values to reside on the constraint surface;

e they generate gauge transformations as identifications of physically
equivalent field configurations on the constraint surface

e they provide the total Hamiltonian of the system; this means that
a particular combination of the constraints, generates Hamiltonian
equations of motion in a time coordinate.

Any particular choice for the total Hamiltonian will result in equations of
motion written in specific gauge. But since the theory is invariant under
gauge transformations generated by constraints, the choice of a total Hamil-
tonian does not matter, and all sets of equations of motion obtained for
different gauges are equivalent.
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