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What are these data?

How to fit them with a better model?
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What are these data?

They come from supernovae of type la

There are two very different mechanisms leading to SN explosions:

The gravitational collapse of the core of a star, once the nuclear fuel that feeds the thermonuclear reactions inside
the core is exhausted. Depending on the properties of the progenitor, this leads to events classified as type Ib, Ic
or type Il SNe, and leaves behind a compact remnant, usually a neutron star or possibly a black hole

The thermonuclear explosion of a white dwarf that accretes mass from a companion, going beyond its
Chandrasekhar limit (in reality it never reaches it, but we have increase of temperature in the core, which leads to
carbon fusion leading to an explosion). This gives rise to type la SNe. In this case the star that explodes is
dispersed in space and its remnant is not a compact object.

Release an energy ~ 10°° GeV
99% are neutrinos
1% goes into kinetic energy of the ejected material

less than 0.01%, i.e. about 10°2 GeV, is released in photons

The corresponding peak luminosity in photons can be of order a few times 109L® or higher. Thus, a typical core-

collapse SN at its peak has an optical luminosity that rivals the cumulative light emitted by all the stars in its host
galaxy
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SNla at small distance, so their relative distance can be found from redshift, so the relative brightness
They don’t really have the same luminosity

Because of different composition

Because of intergalactic medium
But we see that they look the same, some stretch factor should correct it

The Pskovskii-Phillips relation
(Mp) pear = — 21.727 + 2.698Am;5(B)  with similar relations in V- and I- bands

because of composition: more 56Ni, implies higher peak, so higher temperature and opacity, therefore a slower
decline of the light curve

+ some other corrections, we can make them standard candles
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Therefore after corrections, we can know their absolute magnitude M, we measure m and redshift (z) so we obtain x(z)
They are very interesting because:

. . o~ . 10
Very luminous, they reach an absolute magnitude of M ~ — 19 corresponding to 10 M@
Relative small dispersion of the peak absolute magnitude

Explosion is fairly uniform and well understood

They have a big problem:

They are very rare. In a galaxy, they occur 1 or 2 times per millennium

So we need a better strategy than luck to find them
Observe a large part of the sky

Observe it again ~ 3 weeks after

Do the difference between images and follow the differences which are supernovae

*  (a$%een toom
telescopes
on Earth)
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px+3H(py+Py)=0 = py=0 = pyisconstant = Py is constant

X is known as the cosmological constant, and we write it A (instead of X)



A brief history of the Universe

Time Energy
Planck Epoch? <10 % g 10" GeV
String Scale? >10 ® s | <10 GeV
Grand Unification? ~ 10 5 10" GeV
Inflation? > 10 * s | <10 GeV
Baryogenesis? <107 s > 1 TeV
Neutrino Decoupling ls 1 MeV
BDBN 3 min 0.1 MeV
Redshift
Matter-Radiation Equality 10* yrs 1eV 10*
Recombination 10° yrs 0.1 eV 1,100
Dark Ages 10° — 10° yrs > 25
Reionization 10% yrs 25 —6
Galaxy Formation ~ 6 x 10% yrs ~ 10
Dark Energy ~ 107 yrs ~ 2
Solar System 8 % 10” yrs 0.5
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In Guth’s inflation theory, the grand unification phase transition gave rise to cosmic inflation

Due to the phase transition, a huge amount of energy was released in the Universe

The release of the energy of the vacuum transformed the virtual particles, into real particles

In Linde’s inflation, the expansion is produced by the decay of the potential energy of a field called inflaton

In all cases, we end this period with a hot Universe filled with interacting particles
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Cosmic Microwave Background

The Universe contained plasma, an incandescent and opaque soup of photons, protons and electrons

Because of these continuous reactions, light underwent continuous deviations and reflections and was therefore trapped
in the plasma

The Universe was opaque and dark but its temperature continues to decrease

At sufficient low temperature, electrons were captured by helium and hydrogen: the so called Recombination

The photons trapped by the interactions, with the electrons, became free to move and reached us
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Cosmic Microwave Background

The Universe contained plasma, an incandescent and opaque soup of photons, protons and electrons

Because of these continuous reactions, light underwent continuous deviations and reflections and was therefore trapped
in the plasma

The Universe was opaque and dark but its temperature continues to decrease
At sufficient low temperature, electrons were captured by helium and hydrogen: the so called Recombination

The photons trapped by the interactions, with the electrons, became free to move and reached us

Almost perfect black body spectrum with very small fluctuations
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Cosmic Microwave Background

Where do the fluctuations come from?

They come from inflation, during which quantum fluctuations are stretched which caused the variations in density

One important ingredient is dark matter which interacts only gravitationally, so they tend to accumulate in potential wells



Cosmic Microwave Background

Where do the fluctuations come from?

They come from inflation, during which quantum fluctuations are stretched which caused the variations in density

One important ingredient is dark matter which interacts only gravitationally, so they tend to accumulate in potential wells

Baryonic matter tends to fall in the gravitational wells



Cosmic Microwave Background

Where do the fluctuations come from?

They come from inflation, during which quantum fluctuations are stretched which caused the variations in density

One important ingredient is dark matter which interacts only gravitationally, so they tend to accumulate in potential wells

Baryonic matter tends to fall in the gravitational wells

Radiation pressure tends to oppose to it
00

J\f\/’v
o - W

—
VAVAV)



Cosmic Microwave Background

Where do the fluctuations come from?

They come from inflation, during which quantum fluctuations are stretched which caused the variations in density

One important ingredient is dark matter which interacts only gravitationally, so they tend to accumulate in potential wells
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Producing oscillations in this plasma which is converted into temperature fluctuations

—_— Of course the oscillations will depend on the expansion of the Universe, the amount of
VAVAV) dark matter, baryonic matter, dark energy (a bit), photons, neutrinos....
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Where do the fluctuations come from?

They come from inflation, during which quantum fluctuations are stretched which caused the variations in density

One important ingredient is dark matter which interacts only gravitationally, so they tend to accumulate in potential wells
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Cosmic Microwave Background

Where do the fluctuations come from?

They come from inflation, during which quantum fluctuations are stretched which caused the variations in density

One important ingredient is dark matter which interacts only gravitationally, so they tend to accumulate in potential wells

J\N @ Baryonic matter tends to fall in the gravitational wells
/
Radiation pressure tends to oppose to it
00 JUV
® « _°©
Producing oscillations in this plasma which is converted into temperature fluctuations
‘_\, ® Of course the oscillations will depend on the expansion of the Universe, the amount of
VAVAV) dark matter, baryonic matter, dark energy (a bit), photons, neutrinos....
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What is the Baryon Acoustic Oscillation?
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Credit: SDSS-Ill, South Pole Telescope —
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BAO

How do we measure BAO?

separation

Credit: http://caastro.org/

The BAO can be measured at a given redshift and it will depend on the cosmological model



All observations

Considering all observations, and if we assume w = — 1, we find
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Considering all observations, and if we assume w = — 1, we find
A
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All observations

Considering all observations, and if we assume w = — 1, we find
A —42
Q ~~031 Q,,=~0.69 = — = VA~ 1077 GeV
m,0 A0 A0 B
3H?
Supernove Cosmology Project
Suruki, et al, Ap.) (2011)
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If we assume w constant

It is possible that the “X” known as dark energy is the cosmological constant but not sure
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Effects of the cosmological constant

Cosmological effects
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The Universe started accelerating 6,1 10° years ago

(depends a lot on H))
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Cosmological effects

d
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Cosmological effects

Evolution of the Universe

0 5 M 15 20 25

t (10° years)

For a cosmological constant, the Universe expands exponentially in the future

For w < — 1 (phantom energy), the scale factor diverges after a finite time (Big Rip)
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Black hole effects

2M A LN\ L, dr*
1 — — r>dt +
3 1 _2M

r

We have two horizons

Event horizon

Cosmological horizon

Singularity (It has also entropy and temperature)

Even without mass we have a horizon, we can’t see points at infinity
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Effects of the cosmological constant

Black hole effects

2M A dr?
ds? = — (1 _ r2>dt2 + + 12(d0? + sin® 0dp?)
r 3 | =2 _An
r 3
We have two horizons Newtonian limit

. <mA GMn )_,

ma = \|\——r — e,
3 r2

Repulsive force

Dominant at large distances

Event horizon

Cosmological horizon

Singularity (It has also entropy and temperature)

Even without mass we have a horizon, we can’t see points at infinity
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Cosmological Constant Problem

Quantum mechanics

Electron of the hydrogen atom Harmonic oscillator
= \ |
\ /
Excited modes \ / Excited modes
n=2
Fundamental mode
n=1 Fundamental mode The energy is not zero because of the Heisenberg Principle

Quantum Field Theory

The number of particles is not fixed
We have a field which has a fundamental mode and excited states
Excited states represent the creation of particles

The fundamental mode is the absence of particles, known as vacuum and as quantum mechanics it has energy

So vacuum of each field has energy... and it has pressure such that P = — p
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They are various fields in Nature and each one has some vacuum energy
Fermion fields have a negative vacuum energy

Boson fields have a positive vacuum energy
We do not have in Nature, 1 boson for 1 fermion, so they do not cancel each other and we need to calculate it
Do vacuum fluctuations really exist? Yes

Lamb Shift Casimir effect
vacuum vacuum

Electron interacts with the vacuum
Which modifies the “position” of the electron

And therefore its energy

Forthe staten =2and 7 =0
we have AE ~ 2.8 ueV Two conducting plates

They move under some pressure due to vacuum energy

one-loop effect of _
y Y quantum electrodynamics Vacuum energy exists
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Do vacuum fluctuations gravitate? Yes

AE
Vacuum energy modifies the inertial masses by — = 103 for Aluminium and — = 3.1073 for Platinum

But when we measure mg/ m; for both particles, we find the same value for both elements

Therefore, the vacuum energy contributed similarly to m, which means that it gravitates
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We assume that General Relativity is the correct theory
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(Vacuum energy curves spacetime)

In cosmology, we get 3H? = A a(t) = a(to)eH(t_to) de Sitter Universe
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(The cosmological constant problem is a problem of fine-tuning)

Before electroweak phase transition

A = 10000.0000000000000000000000000000000000000000000000000000000000000000000000000000000000001 GeV?

After electroweak phase transition

A = 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000001 GeV?

If we remove 1 zero, the Universe accelerates too early and structures will not have time to form
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There is no positive cosmological constant in String Theory
String Theory is a theory which is the best candidate for a theory describing all forces
More than a theory, it is a consistent framework
Therefore, any theory should be in the UV equivalent to some String Theory

Observationally, even if A is consistent with all observations, other options are also possible
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Cosmological Constant Problem

To assume that some physics cancels completely A To try to find a mechanism which eliminates the
because it is difficult to explain the value and because vacuum energy for example a field which “eats” this
it is not included in String Theory vacuum in such a way that the cosmological constant

doesn’t curve the spacetime
They are known as Dark Energy models

It is often part of what is called Modified Gravity
Or sometimes Modified Gravity

Two approaches
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Beyond ACDM

Scale invariant problem

Amplitude of perturbations observed is approximately (4 %)
the same at all scales (10* Mpc to 10 Mpc)

Origin? Quasi de Sitter Universe

ds? = (—dt* + dx?)

t22

10 15

9 It is scale invariant
t (10”7 years)

—

> A X > X

Inflation

During inflation, the Universe accelerated Passing from a(z;) to 1020 a(t;)

There is no direct observation of inflation but CMB, LSS...
The model says that we had something (usually a scalar field)
P=—p+e

Why not something similar today



It is not A\

because of inflation

because A is problematic
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Dark energy models

As we said A is not a solution so we need something to accelerate the Universe

We need a fluid X with w < — 1/3 to get an acceleration so we need negative pressure

Chaplygin gas

A
P=-=
p

~J -3 1
con materia / p ~+/Ba Early Universe
p =~ \/ A+ Ba~*

\ p \/Z Late Universe

Generalized chaplygin gas

p=-_
pa
Viscosidad T, =puu,+ P, +uu, L, = puu,+ (P —3HC)g,, + u,u,
7} Il +3w
— = 127nGH{ — H Acceleration if { > 0

a
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Dark energy models

Quintessence

A scalar field  ¢(t, x,y,2)

The scalar field has kinetic energy and potential energy

1.,
— Vi
5 ¢ (#)
. _ 1 .
Energy density p = qu + V(¢) % 0%+ V()
w = .
Pressure P = l¢2 — V() %452 — V()

2

+ generalizations K-essence, Horndeski...
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Dark energy models

Dark energy models consider a fluid X with certain properties

Modified gravity modifies how matter and radiation curve spacetime

—

f(T)-gravity f(T)-gravity
Starobinsky model produces inflation

f(R)-gravity

f(G)-gravity
Why not dark energy

f(P)-gravity

f(Q)-gravity
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LJohn — VJohn(¢)Gﬂyaﬂ¢av¢
LPaul — VPaul(¢)P 'm/aﬂa/,tgbaaqb Vuﬂ¢
LGeorges = VGeorges(¢)R

LRingo = VRingo(¢) <R2 _ 4R/wR'm/ + RﬂyaﬂR//{I/(lﬂ>




Fab Four

\

JORN

4

AL GEORGE RINGO AR Y
\\ | LPaul — VPaul(¢)P 'm/aﬂaﬂgbaagb Vuﬂ¢

LGeorges = VGeorges(¢)R

LRingo — VRing0(¢) <R2 _ 4R,uvR'm/ + R,uz/aﬂR/waﬁ>

Self-tuning solution

Admit a Minkowski vacuum for any value of the cosmological constant

Remains true before and after any phase transition where the cosmological constant jumps
instantaneously by a finite amount
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Degravitation

Extra dimensions could be the solution

Extra dimension
A curves also the extra dimension

With D dimensions

1
F
yD-2
. . . 1
At small distances, we do not see the extra dimension F )
r
. . . 1
At large distances, we do see the extra dimension F )
-D—

That is because the 4D graviton acquires a mass
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Degravitation

Let’s consider the case of a uniform source

0", =~1J, with J=A 8
0,F* =divE = divE = - A SN

in electromagnetism

Forgravity ma = (

The situation is very similar, it produces a divergent electric field at infinity

Solution: modify Maxwell’s equations

(1—m—)a -

De-electrifying
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It is similar to give a mass to the photons

1
L — _ZFMVFﬂU+AMJﬂ

1
A, - B,+—0,¢

Stueckelberg
m
1 »
L=——F,F" -
Variation wrt ¢
¢ +mo'B, =0

Variation wrt B*

1 1
L=——F,F" - EmzAﬂA” + A4,

1 1
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Degravitation

It is similar to give a mass to the photons

1 1 1
L=——2F,F"+A", L==2F, "= —m*A A"+ AF], Mass (Proca)

1
Stueckelberg A, = B, + Zaﬂqﬁ

1 1 1
L==2F, "= —m*B B! — 59,$9"hp —mB 9, + BJ,

4 *
Variation wrt ¢ "
¢ +mo'B, =0 ¢ =——0"B,
Variation wrt B*
9, F”v;[sz]—[ma Pl+J, =0
m2
——a”( —0”(() ) = ——0'F

uv




Degravitation

1 1 A
What about non-linearities L=—-—F_ F'— —m?A A* + A — —(A AH)?
4 H o) H H 4 H
It does not spoil the de-electrification
We have the solution E = 0 withA, =a 53 m?a + Aa’ = A

The non-linearities shift Aﬂ without changing the electric field

We want the same for gravity which is a non-linear theory with a cosmological constant A
We would like gravity to be ignorant of A: degravitation
For that we need a massive gravity theory

Let us look to the linear theory

1
Suw = M + h,uz/ R,uv o ERg/,w - = Ag,m/

M — aﬁaﬂhﬂy — ala,,hﬁﬂ + nﬂyaﬂao_hﬂff +0,0,h —n,,O0h = Ay,

Massive gravity h,, — 0,0, — 0,0,h*, +n,,0,0,h*" + 0,0,h — n,,(Th — m*(h,,, — n, h) = A,




Degravitation

Massive gravity

A

o = S e

P — aﬂaﬂhﬂy — aﬁayhﬂﬂ + nﬂyaﬁaahﬂo' +0,0,h — 1, 0h — mz(hw — 1,0 = Any,

It shifts the usual /2, = 0 Minkowski vacuum to a new one but which is also flat

P — aﬂaﬂhﬂy — aﬂayhﬂﬂ + nﬂyaﬁaah“ +0,0,h —n,,

0" hag

@ﬂyaﬂhaﬁ _ mZ(hW -, h) = Any, (1 _

h— m2(hw — 1,0 = An,

2

m

moN o
)@W“ s = Al

We need a theory which gives this type of behavior in the linear regime

GZGIG/M/ = 87ZT//H/ G]GI<_>G,W/ — 871'T”y

A gravitational constant which filters long wavelengths




Anthropic Principle

Copernican Principle: Humans do not occupy a privileged position in the Universe

B. Carter: Although our situation is not necessarily central, it is inevitably privileged to some extent

Very strong anthropic principle: everything in our universe has something to do with humankind

Very weak anthropic principle: takes the very existence of humankind as a piece of experimental
data. For example, in order not to kill a person with the products of radio-decay, the life-time of a
proton must be at least 10'° years

Weak anthropic principle: there are many regions in the universe, a multiverse. In these regions
physical laws are in different forms. It just happens that in the region we are dwelling all physical

laws, physical constants and cosmological parameters are such that clusters of galaxies, galaxies
and our solar system can form, and humankind can appear.
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Seesaw mechanism

Used for example in neutrino physics to explain their small non-zero mass

0 x yi\/y2+4x2
)

x2
Ify > x A=y /1_=—7

-

What about the cosmological constant

M, = pi* =~ 10712 GeV

19 MSZUSY

Mg ey =~ 10*GeV
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Seesaw mechanism

Example of realization of this mechanism

Wheeler-DeWitt equation

(...—A)|T) )

Let’s consider 2 coupled Universes with 2 cosmological constants
(co= A ) 1) + /AR 1) = 0
(---—Al_A2>|‘P2>+\/E|‘P1> =0

2
- A /A A, - 0 /A
VAA, A+ A, VAL VA,

Ay =~ (10 TeV)*

M2

A~ 107%GeV*
Ay = Mp,



Obrigado



