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SNIa

What are these data?

They come from supernovae of type Ia

There are two very different mechanisms leading to SN explosions:

The corresponding peak luminosity in photons can be of order a few times  or higher. Thus, a typical core-
collapse SN at its peak has an optical luminosity that rivals the cumulative light emitted by all the stars in its host 
galaxy

109L⊙

The gravitational collapse of the core of a star, once the nuclear fuel that feeds the thermonuclear reactions inside 
the core is exhausted. Depending on the properties of the progenitor, this leads to events classified as type Ib, Ic 
or type II SNe, and leaves behind a compact remnant, usually a neutron star or possibly a black hole

The thermonuclear explosion of a white dwarf that accretes mass from a companion, going beyond its 
Chandrasekhar limit (in reality it never reaches it, but we have increase of temperature in the core, which leads to 
carbon fusion leading to an explosion). This gives rise to type Ia SNe. In this case the star that explodes is 
dispersed in space and its remnant is not a compact object.

Release an energy ∼  GeV 
99% are neutrinos 
1% goes into kinetic energy of the ejected material 
less than 0.01%, i.e. about  GeV, is released in photons

1056

1052



SNIa

They don’t really have the same luminosity

SNIa at small distance, so their relative distance can be found from redshift, so the relative brightness

Because of different composition

Because of intergalactic medium

But we see that they look the same, some stretch factor should correct it

The Pskovskii–Phillips relation
(MB)peak = − 21.727 + 2.698Δm15(B) with similar relations in V- and I- bands

+ some other corrections, we can make them standard candles

because of composition: more , implies higher peak, so higher temperature and opacity, therefore a slower 
decline of the light curve

56Ni
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They are very interesting because:

Very luminous, they reach an absolute magnitude of  corresponding to M ≃ − 19 1010M⊙

Relative small dispersion of the peak absolute magnitude

Explosion is fairly uniform and well understood

They have a big problem:

They are very rare. In a galaxy, they occur 1 or 2 times per millennium

So we need a better strategy than luck to find them

Observe a large part of the sky

Observe it again  weeks after≃ 3

Do the difference between images and follow the differences which are supernovae
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Perlmutter et al. 1998

They added  more SNIa for 1 z = 0.83
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Riess et al. 1998

Found the same result

μ

z
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At sufficient low temperature, electrons were captured by helium and hydrogen: the so called Recombination

The photons trapped by the interactions, with the electrons, became free to move and reached us  
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The Universe contained plasma, an incandescent and opaque soup of photons, protons and electrons

Because of these continuous reactions, light underwent continuous deviations and reflections and was therefore trapped 
in the plasma  

The Universe was opaque and dark but its temperature continues to decrease

At sufficient low temperature, electrons were captured by helium and hydrogen: the so called Recombination

The photons trapped by the interactions, with the electrons, became free to move and reached us  

Almost perfect black body spectrum with very small fluctuations
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Where do the fluctuations come from?

They come from inflation, during which quantum fluctuations are stretched which caused the variations in density

One important ingredient is dark matter which interacts only gravitationally, so they tend to accumulate in potential wells

Baryonic matter tends to fall in the gravitational wells

Radiation pressure tends to oppose to it

Producing oscillations in this plasma which is converted into temperature fluctuations

Of course the oscillations will depend on the expansion of the Universe, the amount of  
dark matter, baryonic matter, dark energy (a bit), photons, neutrinos….

Ωb,0 = 0.05

w = − 1/3

ΩCDM,0 = 0.2 ΩΛ,0 = 0.75
ΩCDM,0 = 0.3 ΩΛ,0 = 0.65
ΩCDM,0 = 0.4 ΩΛ,0 = 0.55
ΩCDM,0 = 0.5 ΩΛ,0 = 0.45
ΩCDM,0 = 0.6 ΩΛ,0 = 0.35
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What is the Baryon Acoustic Oscillation?
Recombination

Credit: SDSS-III, South Pole Telescope
Credit: http://caastro.org/



BAO

How do we measure BAO?

Credit: http://caastro.org/

The BAO can be measured at a given redshift and it will depend on the cosmological model
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All observations

Considering all observations, and if we assume , we findw = − 1

Ωm,0 ≃ 0.31 ΩΛ,0 ≃ 0.69 ΩΛ,0 =
Λ

3H2
0

⇒ Λ ≃ 10−42 GeV

If we assume  constantw

It is possible that the “ ” known as dark energy is the cosmological constant but not sureX
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Effects of the cosmological constant

a(t)

t (109 years)

w = − 1.5

w = − 1

w = − 0.5

For a cosmological constant, the Universe expands exponentially in the future

For  (phantom energy), the scale factor diverges after a finite time (Big Rip)w < − 1
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+ r2(dθ2 + sin2 θdϕ2)

We have two horizons

Singularity

Event horizon

Cosmological horizon

Even without mass we have a horizon, we can’t see points at infinity

Newtonian limit

m ⃗a = (mΛ
3

r −
GMn

r2 ) ⃗e r

Repulsive force

Dominant at large distances

(It has also entropy and temperature)

Black hole effects
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Cosmological Constant Problem

n=1

n=2

n=3

n=4

Electron of the hydrogen atom

Fundamental mode

Excited modes

Quantum mechanics

Quantum Field Theory

The number of particles is not fixed

We have a field which has a fundamental mode and excited states

Excited states represent the creation of particles

Fundamental mode

Excited modes

Harmonic oscillator

The energy is not zero because of the Heisenberg Principle

The fundamental mode is the absence of particles, known as vacuum and as quantum mechanics it has energy

So vacuum of each field has energy… and it has pressure such that P = − ρ
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They are various fields in Nature and each one has some vacuum energy

Fermion fields have a negative vacuum energy

Boson fields have a positive vacuum energy

We do not have in Nature,  boson for  fermion, so they do not cancel each other and we need to calculate it1 1

Do vacuum fluctuations really exist?                   Yes

Electron interacts with the vacuum

Lamb Shift Casimir effect

electron

Which modifies the “position” of the electron

And therefore its energy

one-loop effect of 
quantum electrodynamics

Two conducting plates

vacuum vacuum

They move under some pressure due to vacuum energy

Vacuum energy exists

For the state  and   
we have 

n = 2 ℓ = 0
ΔE ≃ 2.8 μeV
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In cosmology, we get 3H2 = Λ a(t) = a(t0)eH(t−t0) de Sitter Universe
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The cosmological constant problem is a problem of fine-tuning

Λ = 10000.0000000000000000000000000000000000000000000000000000000000000000000000000000000000001 GeV2

Before electroweak phase transition

After electroweak phase transition

Λ = 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000001 GeV2

If we remove 1 zero, the Universe accelerates too early and structures will not have time to form
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Cosmological Constant Problem

There is no positive cosmological constant in String Theory

String Theory is a theory which is the best candidate for a theory describing all forces

More than a theory, it is a consistent framework

Therefore, any theory should be in the UV equivalent to some String Theory

Observationally, even if  is consistent with all observations, other options are also possible Λ

 constantw

It’s called a parametrization

w(z) = w0 + wa
z

1 + z
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Cosmological Constant Problem

Two approaches

To assume that some physics cancels completely   
because it is difficult to explain the value and because  
it is not included in String Theory

Λ

Or sometimes Modified Gravity
It is often part of what is called Modified Gravity

They are known as Dark Energy models

To try to find a mechanism which eliminates the  
vacuum energy for example a field which “eats” this  
vacuum in such a way that the cosmological constant 
doesn’t curve the spacetime 
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a(t)

t (109 years)

Inflation

During inflation, the Universe accelerated Passing from    to  a(ti) 1026 a(ti)

There is no direct observation of inflation but CMB, LSS…

The model says that we had something (usually a scalar field)

P = − ρ + ϵ

Scale invariant problem

Amplitude of perturbations observed is approximately ( ) 
the same at all scales (  Mpc to  Mpc) 

4 %
104 10

Origin? Quasi de Sitter Universe

ds2 =
1

t2H2
(−dt2 + d ⃗x 2)

It is scale invariant

t → λt ⃗x → λ ⃗x

Why not something similar today



It is not  

because of inflation 

because  is problematic

Λ

Λ
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Dark energy models

As we said  is not a solution so we need something to accelerate the UniverseΛ

We need a fluid  with  to get an acceleration so we need negative pressureX w < − 1/3

Chaplygin gas
P = −

A
ρ

con materia
ρ ≃ A + Ba−6

ρ ≃ Ba−3

ρ ≃ A

Generalized chaplygin gas

P = −
A
ρα

Viscosidad Tμν = ρuμuν + P(gμν + uμuν) Tμν = ρuμuν + (P − 3Hζ)(gμν + uμuν)

··a
a

= 12πGHζ −
1 + 3w

2
H2 Acceleration if ζ > 0

Early Universe

Late Universe
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Dark energy models

Quintessence

A scalar field ϕ(t, x, y, z)

The scalar field has kinetic energy and potential energy

1
2

·ϕ2 V(ϕ)

Energy density ρ =
1
2

·ϕ2 + V(ϕ)

Pressure P =
1
2

·ϕ2 − V(ϕ)
w =

1
2

·ϕ2 + V(ϕ)
1
2

·ϕ2 − V(ϕ)

+ generalizations K-essence, Horndeski…
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Dark energy models

Dark energy models consider a fluid  with certain propertiesX

Modified gravity modifies how matter and radiation curve spacetime

f(R)-gravity

f(T)-gravity

f(G)-gravity

f(P)-gravity

f(Q)-gravity

f(T)-gravity
Starobinsky model produces inflation

Why not dark energy
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Fab Four

LJohn = VJohn(ϕ)Gμν∂μϕ∂νϕ

LPaul = VPaul(ϕ)Pμναβ∂μϕ∂αϕ∇νβϕ

LGeorges = VGeorges(ϕ)R

LRingo = VRingo(ϕ)(R2 − 4RμνRμν + RμναβRμναβ)

Self-tuning solution

Admit a Minkowski vacuum for any value of the cosmological constant  

Remains true before and after any phase transition where the cosmological constant jumps 
instantaneously by a finite amount  
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Degravitation

Extra dimensions could be the solution

Extra dimension
 curves also the extra dimensionΛ

With D dimensions

F ∝
1

rD−2

At small distances, we do not see the extra dimension F ∝
1
r2

At large distances, we do see the extra dimension F ∝
1

rD−2

That is because the 4D graviton acquires a mass
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The situation is very similar, it produces a divergent electric field at infinity

Solution: modify Maxwell’s equations

(1 −
m2

□ )∂μFμ
ν = − Jν ⇒ (1 −

m2

□ )div ⃗E = − Λ ⇒ ⃗E = ⃗0

De-electrifying
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Degravitation

What about non-linearities L = −
1
4

FμνFμν −
1
2

m2AμAμ + AμJμ −
λ
4

(AμAμ)2

It does not spoil the de-electrification

We have the solution ⃗E = ⃗0 with Aμ = a δ0
μ m2a + λa3 = Λ

The non-linearities shift  without changing the electric fieldAμ

We want the same for gravity which is a non-linear theory with a cosmological constant Λ

We would like gravity to be ignorant of : degravitationΛ

For that we need a massive gravity theory

□ hμν − ∂λ∂μhλ
ν − ∂λ∂νhλ

μ + ημν∂λ∂σhλσ + ∂μ∂νh − ημν □ h = Λημν

Let us look to the linear theory

gμν = ημν + hμν Rμν −
1
2

Rgμν = − Λgμν

□ hμν − ∂λ∂μhλ
ν − ∂λ∂νhλ

μ + ημν∂λ∂σhλσ + ∂μ∂νh − ημν □ h − m2(hμν − ημνh) = ΛημνMassive gravity



Degravitation

Massive gravity

hμν =
Λ

3m2
ημν

It shifts the usual  Minkowski vacuum to a new one but which is also flathμν = 0

□ hμν − ∂λ∂μhλ
ν − ∂λ∂νhλ

μ + ημν∂λ∂σhλσ + ∂μ∂νh − ημν □ h − m2(hμν − ημνh) = Λημν

□ hμν − ∂λ∂μhλ
ν − ∂λ∂νhλ

μ + ημν∂λ∂σhλσ + ∂μ∂νh − ημν □ h − m2(hμν − ημνh) = Λημν

𝒪 αβ
μν hαβ

𝒪 αβ
μν hαβ − m2(hμν − ημνh) = Λημν (1 −

m2

□ )𝒪 αβ
μν hαβ = Λημν

We need a theory which gives this type of behavior in the linear regime

G−1
N Gμν = 8πTμν G−1

N ( m2

□ )Gμν = 8πTμν

GN

k
A gravitational constant which filters long wavelengths



Anthropic Principle

Copernican Principle: Humans do not occupy a privileged position in the Universe  

B. Carter: Although our situation is not necessarily central, it is inevitably privileged to some extent  
  

Very strong anthropic principle: everything in our universe has something to do with humankind 

  

Very weak anthropic principle: takes the very existence of humankind as a piece of experimental 
data. For example, in order not to kill a person with the products of radio-decay, the life-time of a 
proton must be at least  years 

  
1016

Weak anthropic principle: there are many regions in the universe, a multiverse. In these regions 
physical laws are in different forms. It just happens that in the region we are dwelling all physical 
laws, physical constants and cosmological parameters are such that clusters of galaxies, galaxies 
and our solar system can form, and humankind can appear.
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Λ1 ≃ (10 TeV )4

Λ2 ≃ M4
Pl

Λ− ≃ 10−46GeV4
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