GRAL: IN SEARCH OF QUASAR GRAVITATIONAL LENSES FROM GAIA AND BEYOND

Alberto Krone-Martins, on behalf of Gaia GraL
Donald Bren School of Information and Computer Sciences
University of California, Irvine

GRAL: IN SEARCH OF QUASAR GRAVITATIONAL LENSES FROM GAIA AND BEYOND

Alberto Krone-Martins, on behalf of Gaia GraL
Donald Bren School of Information and Computer Sciences
University of California, Irvine

In this short talk...

Why?

How?

The future?

In this short talk...

Why?

How?

The future?

Why Strongly Lensed Quasars?

Why Strongly Lensed Quasars?

MULTIPLY-IMAGED QSOS

Among the most interesting and useful (and rare) extragalactic phenomena...

GRAL: IN SEARCH OF LENSED AND MULTIPLY IMAGED QUASARS

MULTIPLY-IMAGED QSOS

Quasars are variable sources...

GRAL: IN SEARCH OF LENSED AND MULTIPLY IMAGED QUASARS

MULTIPLY-IMAGED QSOS

Quasars are variable sources...

MULTIPLY-IMAGED QSOS

Quasars are variable sources...

modelling: astrometry + photometry + spectroscopy
measurement: photometry time-series

MULTIPLY-IMAGED QSOS : HO

Lensed QSO variability is a key to HO inference
modelling: astrometry + photometry + spectroscopy
measurement:

photometry
time-series

$H_{0}$$\quad \frac{\left(1+z_{L}\right)}{d_{L S}}\left[\frac{d_{L} d_{S}}{2}|\vec{\theta}-\vec{\beta}|-\psi_{2 D}(\vec{\theta})\right]$

GRAL: IN SEARCH OF LENSED AND MULTIPLY IMAGED QUASARS

MULTIPLY-IMAGED QSOS : HO

CMB + Planck	Divaletin etala ariv:2103.0183
CMB no Planck	

MULTIPLY-IMAGED QSOS : DARK MATER

What would happen if you had more matter around the lensing galaxy?

MULTIPLY-IMAGED QSOS : DARK MATER

Lensed QSOs are a probe of the dark matter clumpiness in the lens

Astrometric + photometric deviation from smooth potential prediction due to DM substructure

MULTIPLY-IMAGED QSOS

Among the most interesting and useful (and rare) extragalactic phenomena...

MULTIPLY-IMAGED QSOS

Among the most interesting and useful (and rare) extragalactic phenomena: $\sim 2 \times 10^{3}$ among the $\sim 2 \times 10^{9}$ Gaia sources

In this short talk...

Why?

How?

The future?

GAIA WAS CREATED FOR STARS, BUT IT ALSO OBSERVES GALAXIES!

Sky density of 1.8 million Gaia input galaxies selected by a fully unsupervised method (iterative HDBSCAN+SVM+Hausdorf metric over GaiaDR1+DR2+PS1DR2+AlIWISE)

MULTIPLY-IMAGED QSOS

SEARCHING FOR GRAVITATIONAL LENSES

SEARCHING FOR GRAVITATIONAL LENSES

SEARCHING FOR GRAVITATIONAL LENSES

SEARCHING FOR GRAVITATIONAL LENSES

~1 THOUSAND CANDIDATES
Human Vetoing Of Candidates

SEARCHING FOR GRAVITATIONAL LENSES

SEARCHING FOR GRAVITATIONAL LENSES

A continuous learning loop, with continuously evolving training sets AND methods
AI as Augmented Intelligence, not as Artificial Intelligence

THREE MAJOR METHODOLOGICAL FAMILIES

THREE MAJOR METHODOLOGICAL FAMILIES

SEARCHING FOR GRAVITATIONAL LENSES: ERTS

The learning set of observations

- 10^{8} simulated GLs composed of four components (ABCD)
- + all combinations of three components (ABC, ABD, ACD, BCD)
- 10^{8} configurations of random fluxes/positions

- $:$	$\bullet \cdot$	\because	\bullet	-.	\because	-	\cdots
\because	\because	\bullet	- \therefore	\because	*.	. \cdot	\therefore
-	\bullet	\ldots	-"	:	\cdots	-	$\stackrel{\rightharpoonup}{\bullet}$
$\because:$		\because.	\bullet -	\bullet	\bullet.	\bullet	\because
\because	\because	$\cdot \bigcirc$	- ${ }^{\prime}$	- -	\bullet	$\bullet \bullet$	-•
\because	-	\bullet -	\therefore	\bullet	\because	$\cdots{ }^{\circ}$.	\bullet
\therefore	\bullet	\bullet	$\stackrel{\square}{\circ}$	-	\cdots	\vdots	: \cdot
$\because \cdot$	\bullet	\cdots	\because -	: •	\therefore	-•	:

PRODUCE > 106 MILLION "GAIA SIMULATIONS"

INCLUDING GAIA DR2/EDR3 ERROR DISTRIBUTIONS (TRAIN WITH A BIASED SET!)

SEARCHING FOR GRAVITATIONAL LENSES: ERTS

THREE MAJOR METHODOLOGICAL FAMILIES

THE ROLE OF TIME SERIES ENTROPY

non-lensed QSO

THE ROLE OF TIME SERIES ENTROPY

non-lensed QSO

THE ROLE OF TIME SERIES ENTROPY

non-lensed QSO

lensed and unresolved QSO

THE ROLE OF TIME SERIES ENTROPY

DETECTION FROM TIME SERIES

DATA

ZIF PHOTOMETRIC TIMESERIES

ZIF ASTROMETRIC TIMESERIES

FEATURE EXTRACTION

ENTROPY
FOURIER POWERSPECTRA

> SLOPES OF SIGNIFICANT FREOUENCIES IN POWERSPECTRA (PVAL SELECTED)

CORRELATIONS BETWEEN PHOTOMETRIC AND ASTROMETRIC TIME SERIES

DETECTION FROM TIME SERIES

DATA	ZIF PHOTOMETRIC TIMESERIES	IIF ASTROMETRIC TIMESERIES
$\begin{aligned} & \text { FEATURE } \\ & \text { EXTRACTION } \end{aligned}$	ENTROPY SLOPES OF SIGNIFICANT FREQUENCIES IN FOURIER POWERSPECTRA (PVAL POWERSPECTRA SELETED)	CORRELATIONS BETWEEN PHOTOMETRIC AND ASTROMEIRIC TIME SERIES
$\begin{gathered} \text { FEATURE } \\ \text { TRANSFORMATION } \end{gathered}$	PCA	
DIMENSION SELECTION	ANDERSON-DARLING TESTS BETWEEN ALL DIMENSIONS (USING KNOWN LENSES)	

PROBLEM: DIMENSIONALITY

DETECTION FROM TIME SERIES

DATA

ZIF PHOTOMETRIC TIMESERIES

ZIF ASTROMETRIC TIMESERIES

FEATURE TRANSFORMAIION

PCA

DIMENSION SELECTION

ANDERSON-DARLING TESTS BETWEEN ALL DIMENSIONS (USING KNOWN LENSES)

ENSEMBLE RANDOM FOREST MODEL CREATED FROM THE RESULTS OF :
ML MODEL
TRAINING

THREE MAJOR METHODOLOGICAL FAMILIES

DETECTION FROM IMAGES

$$
\begin{gathered}
\text { WAVELET POWERSPECTRA OF } \\
\text { G,R,I,Z,Y AND (G-R), (R-I). } \\
\text {... IMAGES }
\end{gathered}
$$

PS1 IMAGES (GRIIY)

FOURIER POWERSPECTRA OF G,R,I,Z,Y AND (G-R), (R-I), ... IMAGES

WASSERSTEN DISTANCES BETWEEN IMAGES

DETECTION FROM IMAGES

PROBLEM: DIMENSIONALITY

PS1 IMAGES (GRIZY)

FEATURE
EXTRACTION
WAVELET POWERSPECTRA OF G,R,I,Z,Y AND (G-R), (R-I), ... IMAGES

FOURIER POWERSPECTRA OF G,R,I,Z,Y AND (G-R), (R-I), ...

WASSERSTEIN DISTANCES BETWEEN IMAGES IMAGES

ANDERSON-DARLING TESTS BETWEEN ALL DIMENSIONS (USING KNOWN LENSES)

SIMPLE HIERARCHICAL CLUSTERING MODEL (WAVELETS ONLY)

DETECTION FROM IMAGES

Total power per scale

DETECTION FROM IMAGES

DETECTION FROM IMAGES

DATA

PS1 IMAGES (GRIIY)

FEATURE EXTRACTION

WAVELET POWERSPECTRA OF G,R,I,Z,Y AND (G-R), (R-I), ... IMAGES

VARIATIONAL AUTOENCODER : VARIABLE TRANSFORMATION
ML MODEL
TRAINNG

RANDOM FOREST + SIMPLE NNETS

SEARCHING FOR GRAVITATIONAL LENSES

A continuous learning loop, with continuously evolving training sets AND methods
AI as Augmented Intelligence, not as Artificial Intelligence

THE FIRST LENSED QSO DISCOVERED FROM ASTROMETRY

Krone-Martins, A.; Delchambre, L.; Wertz, O. et al., A\&A, 616, L11, 2018

Wertz, O.; Stern, D.; Krone-Martins, A. et al., A\&A, 628, A17, 2019

GRAL: SEEING QUADRUPLE...

+ ~3 quadruply imaged, exact number still waiting higher SNR spectra (EDR3)
+ ~31 doubly imaged (DR2+EDR3)

Connor, T., Stern, D., Krone-Martins, A., arXiv:2109.14103 Stern, D. Djorgovski, S. G., Krone-Martins, A., et al., arXiv:2012.10051 Krone-Martins, A., Graham, M..; Stern D, et al., arXiv:1912.08977 Wertz, O.; Stern, D.; Krone-Martins, A. et al., A\&A, 628, A17, 2019 Delchambre, L.; Krone-Martins, A.; Wertz, O., et al., A\&A, 622, A165, 2019

GRAL: SEEING DOUBLE...

Connor, T., Stern, D., Krone-Martins, A., arXiv:2109.14103 Stern, D. Djorgovski, S. G., Krone-Martins, A., et al., arXiv:2012.10051 Krone-Martins, A., Graham, M..; Stern D, et al., arXiv:1912.08977 Wertz, O.; Stern, D.; Krone-Martins, A. et al., A\&A, 628, A17, 2019 Delchambre, L.; Krone-Martins, A.; Wertz, O., et al., A\&A, 622, A165, 2019 Ducourant, C.; Wertz, O.; Krone-Martins, A., et al., A\&A, 618, A56, 2018 Krone-Martins, A.; Delchambre, L.; Wertz, O. et al., A\&A, 616, L11, 2018

A CURIOUS CASE... THE DRAGONS' KITE

$+\sim 31$ doubly imaged (DR2+EDR3)

Connor, T., Stern, D., Krone-Martins, A., arXiv:2109.14103 Stern, D. Djorgovski, S. G., Krone-Martins, A., et al., arXiv:2012.10051 Krone-Martins, A., Graham, M..; Stern D, et al., arXiv:1912.08977
Wertz, O.; Stern, D.; Krone-Martins, A. et al., A\&A, 628, A17, 2019 Delchambre, L.; Krone-Martins, A.; Wertz, O., et al., A\&A, 622, A165, 2019 Ducourant, C.; Wertz, O.; Krone-Martins, A., et al., A\&A, 618, A56, 2018 Krone-Martins, A.; Delchambre, L.; Wertz, O. et al., A\&A, 616, L11, 2018

A CURIOUS CASE. . . THE DRAGONS' KITE

A CURIOUS CASE. . . THE DRAGONS' KITE

FOLLOW UPS FOR HO + DM

UCI

ROSAT data ALSO! HIGH ENERGY FOLLOW UPS: BLACK HOLE PROPERTIES Highly variable!
 major microlensing?

In this short talk...

Why?

How?

The future?

Small training sets: an important challenge

- Supervised learning: only a small number of known lenses to learn...
- Creating training sets from simulations always introduce biases
- Semi-supervised learning and Unsupervised learning are very hard in high-dimensional spaces

Small training sets: an important challenge

- Supervised learning: only a small number of known lenses to learn...
- Creating training sets from simulations always introduce biases
- Semi-supervised learning and Unsupervised learning are very hard in high-dimensional spaces
- How to find the best subspace to solve a classification problem?

Small training sets: an important challenge

- How to find the best subspace to solve a classification problem?
- This is equivalent to find the subspace for which the distance between your classes is maximal.
- Example:

Small training sets: an important challenge

- How to find the best subspace to solve a classification problem?
- This is equivalent to find the subspace for which the distance between your classes is maximal.
- Example:

Small training sets: an important challenge

- How to find the best subspace to solve a classification problem?
- This is equivalent to find the subspace for which the distance between your classes is maximal.
- Example:
- Select dimensions using maximal Wasserstein distances

Small training sets: an important challenge

- How to find the best subspace to solve a classification problem?
- This is equivalent to find the subspace for which the distance between your classes is maximal.
- Example:
- Select dimen Wasserstein

Small training sets: an important challenge

- How to find the best subspace to solve a classification problem?
- This is equivalent to find the subspace for which the distance between your classes is maximal.
- Select dimensions by using Wasserstein distances

Small training sets: an important challenge

- How to find the best subspace to solve a classification problem?
- This is equivalent to find the subspace for which the distance between your classes is maximal.
- Select dimensions by using Wasserstein distances
- Combine multiple dimensions by solving a QUBO problem

$$
\min _{x \in\{0,1\}^{n}} f_{Q}(x) \quad \begin{aligned}
& \text { Use qi,j to encode } \\
& \text { the Wasserstein distance } \\
& \text { between the p.d.f. of lenses } \\
& \text { and no-lenses, projected on the } \\
& \text { a }(x)=\sum_{i=1} q_{i i} x_{i}+\sum_{i<j} q_{i j} x_{i} x_{j} \quad \text { dimensions. }
\end{aligned}
$$

VARIABLE SELECTION VIA QUANTUM ANNEALING

- Heuristic to find good candidate solutions to certain optimization problems using superposition and entanglement of qubits

DOUBLE CANDIDATES FOR KECK, 2021-11-01 UT

Slit PA ~ 0°
(indicated by the blue rectangle)

(XGBOOST + QUANTUM ANNEALING CANDIDATE SELECTION USING EDR3 + WISE + PANSTARRS CATALOGUE AND IMAGE DATA)

Current Members: A. Krone-Martins (U. California, Irvine); C. Ducourant, J. F. Le Campion (U. Bordeaux); L. Delchambre, J. Surdej, D. Sluse (U. Liège); D. Stern (JPL/Caltech), S. G. Djorgovski, M. J. Graham, A. Drake, A. Mahabal (Caltech); R. Teixeira, C. Spindola-Duarte (U. São Paulo); L. Galluccio, F. Mignard, E. Slezak, (Observatoire de la Côte d'Azur), S. Scarano (U. Sergipe), J. Kluter (Louisiana), A. Nierenberg (U. California, Merced), P. Jalan (Aryabhatta), D. Dobie, T. Murphy, C. Boehm (U. Sydney), J. Wambsganss (U. Heidelberg), S. Klioner (U. Dresden)

Past Members:
O. Wertz (Argelander/Bonn)
U. Bastian (ARI/Heidelberg)

