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Motivations: Why quantum cosmology?

I Quantum cosmology removes most of the complexity (going
from quantum field theory to quantum mechanics) but
includes some of the hard questions present in full quantum
gravity, e.g.:
I Interpretation problem;
I Time problem;

I May be the only way to measure a quantum gravity effect,
i.e., through the primordial cosmology.

I When combined with quantum field theory for perturbations
around a quantum background, it may give us hints about the
full quantum gravity.



Quantum cosmology action
Lets consider a Bianchi I mini-superspace with a metric:

ds2 = −N2dτ2 + a2i dx
2
i , i = 1, 2, 3.

The scale factors associated to each direction can be recast as

a1 = V 1/3eβ++
√
2β− ,

a2 = V 1/3eβ+−
√
2β− ,

a3 = V 1/3e−2β+ ,

The action for this model (empty Bianchi I) reads

S =

∫
dτ

(
dθ

dτ
− NH

)
, ˙≡ d

dτ
, dθ ≡ pVdV+p+dβ++p−dβ−

where the Hamiltonian H is

H =
3V

8

(
−p2V +

p2+ + p2−
9V 2

)
.



The time problem

If we quantize the theory as it is, we have (modulo operator
ordering ambiguities):

H|Ψ〉 =
3V̂

8

(
−p̂2V +

p̂2+ + p̂2−

9V̂ 2

)
|Ψ〉 = 0.

I There is no clear time definition;

I The model is (time) reparametrization invariant;

I All operators are considered observables;



The time problem – solving the Hamiltonian constraint

Instead of quantizing the model using H, we can solve the
constraint already in the Hamiltonian formalism.
First, classically we have: ṗ± = 0. Thus, we can change variables
to combine both variables in a single constant:

p+ = k cosα, p− = k sinα,

pk ≡ − (cosαβ+ + sinαβ−) , pα ≡ (k sinαβ+ − k cosαβ−) ,

where k > 0. This leads to:

dθ = pVdV + pkdk + αdpα,

H =
3V

8

(
−p2V +

k2

9V 2

)
.

From here on we ignore (α, pα).



The time problem – solving the Hamiltonian constraint

The classical equations of motion are:

k̇ = 0, V̇ = −N 3VpV
4

,

ṗk = −N k

12V
, ṗV = −N

[
3

8

(
−p2V +

k2

9V 2

)
− k2

12V 2

]
.

The solution must also satisfy

3V

8

(
−p2V +

k2

9V 2

)
= 0.

Note that:
dT

dτ
= −3

4

N

V
< 0, T ≡ 9

pk
k
.

in other words, T is monotonically decreasing function of τ and
consequently has a one-to-one relation with τ .



The time problem – solving the Hamiltonian constraint

Going back to the action, we can write the canonical one-form as:

dθ = pVdV +
T

2
dk2

And then, solve the Hamiltonian constraint explicitly:

dθ = pVdV −
V 2p2V

2
dT .

Now, with the constraint solved the action is simply:

S =

∫
dθ =

∫
dT

(
pV

dV

dT
−

V 2p2V
2

)
,

and the unconstrained Hamiltonian is Hu = V 2p2V /2.

I It is easy to check that this Hamiltonian plus the constraint
gives the same dynamics as the constrained version.



The time problem – solving the Hamiltonian constraint

In this approach we solved the time problem by choosing a
function of the dynamical variables to describe a time variable.

I This function when quantized will have status of time, the
wave-function will not be normalized with respect to it.

I There are many choices of time variable. A convenient choice
leads us to:

S =

∫
dθ =

∫
dτ
(
pV̇ − Hu

)
, Hu ≡

p2

2
.

The problem reduces to a free particle in a half-line V ∈ R+.

I A similar calculation in a Friedmann universe filled with a
single barotropic fluid leads to the same action as above.



Boundary conditions

Our quantum cosmology problem is then reduced to a simple
one-dimensional particle in a half-line, a well known problem.
To make the Hamiltonian Hu self-adjoint we need to impose
boundary conditions on the wave-function ψ(V ), i.e.,

ψ(0) = b0
dψ

dV

∣∣∣∣
V=0

.

For any choice of boundary conditions we have a different physical
scenario, different values of b0 result in different reflections of the
wave-function at the V = 0 boundary.

I Here we work with b0 = 0, but the numerical methods we will
discuss can be adapted to any choice of b0.



Equation of motion

The Schrodinger equation we need to solve is:

iψ̇ = Ĥuψ, Ĥu =

(
− d2

dV 2
+

λ

V 2

)
.

where we chose the representation

V̂ψ = Vψ, p̂ψ = −i dψ
dV

.

The potential λ/V 2 may appear as the result of the coherent state
quantization which we are also interested in comparing with the
canonical quantization (λ = 0).



Physical interpretation: Bohmian trajectories

Another problem in quantum cosmology is of the interpretation of
the wave-function. Using the Bohmian trajectories the problem is
completely resolved, at least for the mini-superspace.
Given the polar parametrization of the wave-function

ψ = Re iS ,

the trajectories are given by

V̇B =
dS

dV

∣∣∣∣
V=VB

.

I This provides a well defined value of VB(t) given an initial
condition VB(t0).

I When dealing with perturbations the conditional
wave-function for the perturbations Ψ [δgµν |VB(t)], gives a
better approximation than the semi-classical approach.



Numerical approach

There are many numerical approaches to solve the Schrodinger
equation

iψ̇ = Ĥuψ, Ĥu =

(
− d2

dV 2
+

λ

V 2

)
,

with the boundary condition ψ(τ,V = 0) = 0. However, here we
need to solve both this equation and the Bohmian trajectory:

V̇B =
dS

dV

∣∣∣∣
V=VB

=
1

2i |ψ|2

(
ψ∗

dψ

dV
− ψdψ∗

dV

)∣∣∣∣
V=VB

.



Numerical approach

This imposes a set of numerical difficulties:

I Any discretization of the function ψ(Vi ) at {Vi}i=1,N will
need to be interpolated to compute ψ(VB) since VB will not
coincide with the knots.

I The derivatives of ψ will also be computed from the
interpolation.

I The interpolation of both ψ and dψ/dV must have the
correct behavior near the boundary.

For example, any polynomial interpolation will fail. Around the first
knot V = 0 the interpolating function ψpoly = bV + cV 2 + dV 3,
the coefficients b, c , d are obtained from a local polynomial or
spline interpolation, the constant part is set to zero to satisfy the
boundary condition ψpoly(0) = 0. However, we also have

iψ̇poly(0) = 0 6= lim
V→0

Hcψpoly → 2c +
bλ

V
.



Numerical approach

More generally, expanding in τ , we have

ψ(τ,V ) ≈ ψ(0,V )− iHcψ(0,V )τ + (−iHc)2ψ(0,V )
τ2

2!
+ . . . .

Thus, to satisfy ψ(τ, 0) = 0 for any time τ , we need to satisfy

lim
V→0

(−iHc)nψ(0,V ) = 0,

for any positive integer n. For this reason a simple polynomial
interpolation does not have the correct asymptotic behavior near
the boundary.

I In the usual spectral approach ψ is decomposed in the
eigenfunctions of Hc, which naturally satisfy the condition
above.

I Even if the initial condition does not satisfy the condition
above, we first project it on the eigenfunctions.



Radial Basis Functions discretization
We can circumvent this problem using Radial Basis Functions
(RBF). In this approach, we write the wave-function as

ψ(V ) =
N∑
n=i

K (V ,Wn)βn,

where K (V ,W ) are the RBF functions. Some common choices for
K are:

I Gaussian Kg(V ,W ) = e−h
2(V−W )2 ,

I Inverse quadratic: Kic(V ,W ) = 1
1+h2(V−W )2

.

Note that these functions, differently from a local polynomial
interpolation, have support in the whole domain R+. For this
reason, we can adapt this basis in order to satisfy

lim
V→0

(−iHc)nK (V ,W ) = 0,

for any value of n.



Radial Basis Functions discretization

Using the ansatz K (V ,W ) = V α
(∑∞

n=0 cn
V n

n!

)
, we obtain:

HcK (V ,W ) = V α

{ ∞∑
n=0

cn
V n−2

n!
[−α(α− 1)− 2nα− n(n − 1) + λ]

}
.

To obtain the same behavior as K (V ,W ), we need to satisfy

c0 [λ− α(α− 1)] = 0,

c1 [λ− α(α + 1)] = 0.

Since we cannot use α to satisfy both equations, we choose
α(α + 1) = λ and c0 = 0. Finally, since c0 = 0, we need to impose
c2 = 0 to have the same behavior for HcK (V ,W ), consequently,
for any power of the Hamiltonian we need to impose that c2n = 0
for any integer n.



Radial Basis Functions discretization

In order to satisfy the conditions above, we start with a standard
RBF, e.g, Kg(V ,W ) and define:

K (V ,W ) = (VW )α [Kg(V ,W )− Kg(−V ,W )] ,

= (VW )α
[
e−h

2(V−W )2 − e−h
2(V+W )2

]
.

It is easy to see that this RBF satisfy all the conditions above.
Now, given a set of N knots {Vn}n=1,N , we have

ψn =
N∑

m=1

Knmβm, Knm ≡ K (Vn,Vm), ψn ≡ ψ(Vn).

Then, inverting Knm we can obtain the initial conditions for βn.



Radial Basis Functions discretization
The Schrodinger equation calculated at the knots is

i β̇n =

N,N∑
m=1,l=1

K−1nm (HK )mlβl , (HK )ml ≡ HuK (Vm,Vl).

Diagonalizing the matrix Mnl ≡
∑N

m=1 K
−1
nm (HK )ml we can project

βn in the basis of eigenvectors of Mnl and solve the evolution
analytically. Then, once we have ψ(τ,V ) we compute the
evolution of the Bohmian trajectories.
We used two classes of initial conditions:

I Gaussian:

ψ0(V ) ∝ e−
(V−µ)2

4σ2 +
3iH0V

2

2 .

I Exponential:

ψ0(V ) ∝
(
V

Vi

)α−1
2

e
α−1
2

V
Vi

+iVp0 .



Solutions: Classical, Expected values, Bohmian trajectories

Initial condition (Semi-classical = Classical solutions!):

I Gaussian λ = 0, µ = 0, H0 = −0.5, σ = 1;

I Gaussian λ = 0, µ = 2.5, H0 = −0.5, σ = 1;

I Gaussian λ = 2, µ = 0, H0 = −0.5, σ = 1;

I Exponential λ = 0, Vi = 2, α = 3, p0 = −1.5;

I Exponential λ = 1, Vi = 2, α = 3, p0 = −1.5;



Concluding remarks

I General method for solving Schrodinger equation in the
presence of boundaries.

I Scalable method for higher dimensions (does not scale
exponentially as grid methods Nd).

I Have asymptotic behavior compatible with the boundary
condition, allows a well defined computation of the phase
gradient.

I Simple Gaussian initial conditions can be misleading.

I Gaussian initial conditions seems to lead to Bohmian
trajectories that oscillates around the expected value.

I Exponential initial conditions seems to lead to Bohmian
trajectories that oscillates around the classical trajectories.



Concluding remarks

Thank you!


