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Basic idea
A 3-brane moving in AdS5 background of the second 

Randall-Sundrum (RSII) model behaves effectively as a 

tachyon with the inverse quartic potential.

The RSII model may be  extended to include the back 

reaction due to the radion field. Then the tachyon 

Lagrangian is modified by the interaction with the radion. 

As a consequence, the effective equation of state 

obtained by averaging over large scales describes a 

warm dark matter.

Based on the work in colaboration with  Garry Tupper

“Warm” Tachyon Matter from Back-reaction on the Brane” 

arXiv:1302.0955 [hep-th].
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Branewarld cosmology is based on the scenario in which 

matter is confined on a brane moving in the higher 

dimensional bulk with only gravity allowed to propagate in 

the bulk

It is usually assumed that extra dimensions are compact 

and if their size is large enough compared to the Planck 

scale, such a scenario may explain the large mass 

hierarchy between the electroweak scale and the 

fundamental scale of gravity. 

N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429 (1998)

L. Randall and R. Sundrum,  Phys. Rev. Lett. 83 (1999) 3370; ibid. 4690

1. Randall – Sundrum model 



The Randall–Sundrum solution to the hierarchy problem 

is a five dimensional universe containing two four 

dimensional branes separated in the 5th dimension: the 

observer’s brane and the negative tension brane.

The separation proposed is such that the strength of 

gravity on observer’s brane is equal to the observed 

four-dimensional Newtonian gravity.



x

5x y

The 5-dim bulk is ADS5/Z2 with the line element

Observers reside on the positive tension brane at  y=0
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In the second Randall–Sundrum model (RSII)  the 

negative tension brane is pushed off to infinity in the fifth 

dimension and Planck mass scale is determined by the 

curvature of the five-dimensional space-time rather then 

the size of the fifth dimension. 

Hence, the model solves the mass hierarchy problem 

without resorting to finite extra dimensions and provides 

an alternative to compactification. 



Radion
The Randall-Sundrum solution corresponds to an empty 

brane at y=0. Placing matter on this observer brane

changes the bulk geometry; this is encoded  in the radion

field related to the variation of the physical interbrane

distance d5(x).



2. Gravity in the Bulk – the Radion

The naive AdS5 geometry of RSII is distorted by  the radion. 

To see this, consider the total gravitational action in the bulk 
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We choose a coordinate system such that 

and we assume a general metric which admits Einstein 

spaces of constant 4-curvature with the line element 
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where  R is the 4-d Ricci scalar made out of the 4-d metric

We have omitted the total y-derivative term because it is  

cancelled by the Gibbons – Hawking term in the action

The 5-dim bulk action may be put in the form 

For  consistency with Einsten’s equations we require  

In addition, we impose  the „Einstein frame‟ gauge 

condition                        so the coefficient of R in Sbulk is 

a function of y only 

 5 5
0R 



2 2( )W y  

g



We  arrive at the 5-dimensional line element
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By choosing                     and neglecting the radion we 

recover the AdS5 geometry. Hence, the choice                   

corresponds to  the RSII model. 

J.E. Kim, G. Tupper, and R. Viollier, PLB 593 (2004) 

( ) kyW y e

This metric is a solution to Einsten’s equations 

provided

precisely as it is in the RSII model

( ) kyW y e

where the field ϕ represents the radion. 
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Integration over y fom 0 to ∞ yields
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the last term  may be canceled by  the two brane actions
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Then, the  bulk action takes a simple form 
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and the canonically normalized radion



is no longer infinite so  the physical size of the 5-th 

dimension is of the order                 although its coordinate 

size is infinite 

The appearance of a massless mode – the radion – causes

2 effects 

1. Matter on observer’s brane sees the (induced) metric 

2. The physical distance to the AdS5 horizon at coordinate 

infinity
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Consider a 3-brane moving in the 5-d  bulk spacetime 

with metric 2
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3. Dynamical Brane – the Tachyon



The points on the brane are parameterized by     

.  The 5-th coordinate Y is treated as a 

dynamical field. The brane action 
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with the induced metric
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Changing  Y to a new field                      we obtain 

the effective brane action
= /kYe k
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In the absence of the radion field ϕ we have a pure 

undistorted AdS5 background and

This action describes a tachyon with inverse quartic

potential. 
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More generally an effective Born-Infeld type lagrangian

for the  tachyon field θ describes unstable modes in string 

theory 

The typical potential has minima at . Of particular 

interest is the inverse power law potential . 

For n > 2 , as the tachyon rolls near minimum

very quickly and one thus apparently gets pressure-less 

matter (dust) or cold dark matter.
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A. Sen, JHEP 0204 (2002); 0207 (2002). 

L.R. Abramo and F. Finelli,  PLB 575(2002). 

Tachyon as CDM
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For n=0, i.e., V=V0 , one gets the Chaplygin gas 

the first definite model for a DE/DM  unification
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A. Kamenshchik, U. Moschella, V. Pasquier,  PLB 511 (2001)  

J.C. Fabris, S.V.B. Goncalves, P.E. de Souza, GRG 34 (2002)

N.B., G.B. Tupper, R.D. Viollier, PLB 535 (2002)  

In general any tachyon model can be derived as a map from 

the motion of a 3-brane moving in a warped extra dimension.  



E.g., for positive power law potential

2

0( ) nV V  

One can get dark matter and dark energy as a single entity

i.e., another model for DE/DM unification

N. B., G. Tupper, R.Viollier, Cosmological tachyon condensation. Phys. 

Rev. D 80 (2009) 

Tachyon has been heavily exploited in almost any 

cosmological context: as inflaton, DM, DE 



1. The geometric tachyon is seen on our brane as a 

form of matter and hence it affects the bulk 

geometry in which it moves. 

2. The back-reaction qualitatively changes the 

geometric tachyon: the tachyon and radion form a 

composite substance with  a modified equation of 

state. 

The dynamical brane causes two back-reaction  effects 



Instead of the tachyon field defined previously as                   

it is convenient to introduce a new field 

= /kYe k
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4. Field Equations

where



Where we define canonical conjugate momentum fields

,

, 2 3
, , , ,

= = = =
1 /

gL L
g

g



   

   
   

  
  

      

For timelike      and       we may also define the norms

= =g g   

            

Then the  Lagrangian may be  expressed as

2
2

2 2 2 2

1 1
=

2 1 / ( )





 

    
L

,, 



The corresponding energy momentum tensor 

may be expressed as a sum of two ideal fluids 
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The Hamiltonian may be identified with the total energy 

density 
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It may be easily verified that  H is related to L through the 

Legendre transformation   
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Here the dependence on Φ and  Θ is suppressed. The rest 

of the field  variables are constrained by  Hamilton’s 

equations



Hamilton’s equations

Now we multiply the first and second equations by            

and     , respectively, and we take a covariant divergence 

of the next two equations  
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We obtain a set of four 1st order diff. equations 

=  
2 2 2

=
1 / ( )





 


    




2 2 2

1 2 2 2 2

3 4 3
3 =

1 / ( )
H 

 



   
    

    




 

2 2 2

2 2 2 2 2

1 4 3
3 =

1 / ( )
H 

 



   
   

    




 

4 4
= sinh 2

3 3

G G  
  

 

where

1 1 ; 2 2 ;3 = 3 =H u H u 

 

1 , 2 , 1 , 1 ,, , ,u u u u   

                   



4. Isotropic Homogeneous Evolution

To exhibit the main features we solve our equations 

assuming spatially flat FRW spacetime with line 

ellement  
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We evolve the radion-tachyon system from t=0 with 

some suitably chosen initial conditions 



Evolution of the radion-tachyon system for  λl2=1/3 with the initial 

conditions at t=0: 1.01, 0.1, 0       
Time is taken in units of l



After the transient period the equation of state w=p/ρ

becomes positive and oscillatory



Approximate asymptotic solution to second order in the 

amplitude A of tΦ
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Since the oscillations in  w are rapid on cosmological 

timescales, it is most useful to time average co-moving 

quantities. The effective equation of state is then 

By averaging the asymptotic w over long timescales we 

find

23
0.017
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A
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where we have estimated A by comparing the exact and 

approximate solutions for tΦ



CDM is rather successful in explaining the large-scale  

power spectrum  and CMB spectrum.

However  there is some inconsistency of many body 

simulations with observations:

1. Overproduction of satellite galaxies  

2. Modelling haloes with a central cusp.

Warm dark matter

It is believed that these problems may be alleviated 

to some extent with the so called Warm DM

Besides, it has been recently argued that 

cosmological data favour a dark matter equation 

of state wDM ≈ 0.01

A. Avelino, N. Cruz and U. Nucamendi, arXiv:1211.4633



We assume that our equation of state w≈0.017 corresponds 

to that of (nonrelativistic) DM thermal relics of mass mDM at 

the time of radiation-matter equality teq
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Hence, we take                                          and identify

This gives mDM ≈ 0.43 keV

D e| =< >= 0.017M qw w

e eq= = 7.4 eV  at qT T t t

To demonstrate that our  asymptotic equation of state is 

associated with WDM, we will show that the horizon mass at 

the time when the equivalent DM particles just become 

nonrelativistic is typically of the order of a small galaxy mass. 



These DM particles have become non relativistic at the 

temperature T≡TNR =mDM  , corresponding to the scale
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where                               for a spatially flat universe. 

Thus, at a=aNR we obtain 

15

e 2 10qM M 

10

H 10M M

the mass scale typical of a small galaxy and therefore 

the DM may be qualified as warm.



Conclusions&Outlook

• We have demonstrated that back-reaction causes the 

brane – radion system to behave as “warm” tachyon 

matter with a linear barotropic equation of state 

• The ultimate question regards the clustering properties 

of the model. At the linear level one expects a 

suppression of small-scale structure formation: initially 

growing modes undergo damped oscillations once they 

enter the co-moving acoustic horizon 

• Perturbation theory is not the whole story – it would be 

worth studying  the nonlinear effects, e.g., using the 

Press-Schechter formalism as in the pure tachyon model 

of  N. B., G. Tupper, R.Viollier, Phys. Rev. D 80 (2009) 
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