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Outline

1. Motivation

2. Collapsing models

3. Effects of gauge corrections in a collapsing universe

4. Final considerations

1



Motivation



Stochastic Formalism

• Allow us to compute non-linear primordial density perturbations

beyond usual perturbative approach!

1. Correlations functions in stochastic inflation (V.Vennin and A.

Starobinsky, arXiv:1506.04732);

2. Quantum diffusion during inflation and primordial black holes (Chris

Pattison et al., arXiv:1707.00537);
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Basic idea of inflation

From Einstein equations, the scale factor satisfies

ä

a
= −4πG

3
(1 + 3w)ρ where w =

P

ρ
. (1)

If w < −1/3, we have an accelerated expansion

ä > 0 . (2)

The amount of inflation is quantified by the number of e-folds

N = log

(
a

ai

)
. (3)

We require N & 60 to solve flatness and horizon problems!
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Rolling models of inflation

• Equation of motion

• Flat region

• V (φ) almost constant

• ρvac dominates energy

density

• a ≈ aie
Ht

• Decay of φ

• Particle production

• Reheating

φ̈+ 3Hφ̇+ Γφ̇+ V ′(φ) = 0

Figure 1: Example of an inflaton

potential. TASI Lectures on Inflation

[arXiv:0907.5424].
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Inflationary models and Observation
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Figure 2: Marginalized joint 68% and 95% CL regions for ns and r at

k = 0.002Mpc−1 from Planck alone and in combination with BK14 or BK14

plus BAO data, compared to the theoretical predictions of selected inflationary

models. Planck 2018 results. X. Constraints on inflation [arXiv:1807.06211].
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To summarise

Modern view of cosmology

• Origin of large-scale structures from quantum vacuum fluctuations;

• Small-scale initial perturbations stretched by accelerated expansion;

• Classical inflation: slowly-rolling, self-interacting scalar field, almost

scale-invariant spectrum. Very successful paradigm!

But inflation is not a complete theory

• Ignores initial singularity

• Trans-Planckian modes

• Fine-tuning of the potential, etc...

Bouncing models can resolve some inflation problems.

Need for: contracting phase + bounce mechanism + expanding phase
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How a bouncing universe could look like

Credits: https://www.aei.mpg.de/gravitation-and-cosmology
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Collapsing models



We do not have a unique prescription for the initial conditions

of our Universe, so there is no reason to avoid considering other

mechanisms beyond inflation.

Collapse scenario depends on potential

• Non-stiff collapse: P < ρ with V > 0; (including scale-invariant

collapse)

• Pre-Big Bang collapse: P = ρ with V = 0; (blue tilted)

• Ekpyrotic collapse: P � ρ with V < 0; (ultra-stiff fast-roll collapse)

Classical stability well-known (I. Heard and D.Wands,

arXiv:gr-qc/0206085).

Objective of this work

Study collapse scenarios with quantum fluctuations.
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FRW Collapse

L =
√−g

[
1

2κ2
R − 1

2
∂µϕ∂µϕ− V (ϕ)

]
and ds2 = −dt2 + a2(t)γijdx

idx j .

Scalar field with energy density and pressure

ρ =
1

2
ϕ̇2 + V (ϕ) , P =

1

2
ϕ̇2 − V (ϕ) , (4)

Equation of State

P = wρ . (5)

We choose V (ϕ) = V0e
−κλϕ =⇒ scaling solution with

a ∝ |t|p where p =
2

λ2
and λ2 = 3(1 + w) . (6)
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Dynamical system

Reducing dynamics to a one-dimensional problem

Klein-Gordon equation + Friedmann constraint

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0 ; H2 =

κ2

3

(
1

2
ϕ̇2 + V

)
. (7)

Changing to dimensionless variables

x =
κϕ̇√
6H

, y =
κ
√
±V√
3H

, (8)

The Friedmann constraint becomes

x2 ± y2 = 1 , (9)

Dynamical system (prime: N = ln(a))

x ′ = −3x(1− x2)± λ
√

3/2y2 , (10)

y ′ = xy(3x − λ
√

3/2) . (11) 10



1D Phase-space

Stability analysis

Equation of state

w =
x2 ∓ y2

x2 ± y2
. (12)

Critical points

(A±) xA± = ±1 , yA = 0 ; (13)

(B) xB =
λ√
6
, yB =

√
1− λ2

6
;

(14)

the solution (B) exists for

±(6− λ2) > 0.

• λ2 < 6: flat positive

• λ2 > 6: steep negative

Linear perturbations around xB

x ′ =
(λ2 − 6)

3
(x − xB) . (15)

What if we add noise to x?

Figure 3: Phase-space for flat positive

potentials, λ2 < 6. Friedmann

constraint x2 + y 2 = 1. Arrows indicate

evolution in cosmic time, t.
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1D Phase-space

In Summary

• Expanding universe (N → +∞):

� Scaling solution stable for positive, flat potential λ2 < 6 (including

inflation, λ2 � 1).

� Scaling solution unstable for negative, steep potential λ2 > 6.

• Contracting universe (N → −∞):

� Scaling solution stable for negative steep potential λ2 > 6 (including

ekpyrosis, λ2 � 6).

� Scaling solution unstable for positive flat potential λ2 < 6 (including

matter collapse, λ2 = 3).
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Field perturbations

During accelerated expansion or collapse

• |aH| increases → modes starting on sub-Hubble scales (k2 > a2H2)

stretched up to super-Hubble scales (k2 < a2H2).

Result

• Quantum vacuum fluctuations k2/a2 � H2 at early times1 →
well-defined predictions for the power spectrum of perturbations on

super-Hubble scales.

1which means δϕ ' e−ikt/a

a
√
2k

for k2/a2 � H2.
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Field perturbations

Perturbations evolution

Evolution of the perturbed scalar field (v = aδϕ)

d2v

dη2
+

(
k2 − ν2 − 1/4

η2

)
v = 0 . (16)

In power-law cosmology

a ∝ |t|p where ν =
3

2
+

1

p − 1
. (17)

The growing mode solution of quantum fluctuations for a given k is

δϕk =
i

a

√
1

4πk

Γ(|ν|)2|ν|

|kη||ν|−1/2 . (18)
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Power-law collapse

Predictions

• Power spectrum on super-Hubble scales as η → 0

Pδϕ =

[
Γ(|ν|)2|ν|

(ν − 1/2)23/2Γ(3/2)

]2(
H

2π

)2

|kη|3−2|ν| . (19)

• Power-law collapse =⇒ power-law spectrum

∆nδϕ =
d lnPδϕ
d ln k

= 3− 2|ν| . (20)

• ∆nδϕ = 0 for

• Slow-roll inflation (w = −1 and ν = 3/2);

• Pressureless collapse (w = 0 and ν = −3/2);
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Two approaches

Standard perturbation theory

• ϕ = ϕ0 + δϕ;

Stochastic formalism

Introduces a coarse-graining scale kσ = σaH

ϕ =ϕlong + ϕshort

=

∫ kσ

0

d3kϕke
ikx +

∫ ∞
kσ

d3kϕke
ikx ;

• quantise small scales (sub-Hubble) fluctuations;

• large scale squeezed state, effectively classical;

• absorb into local stochastic FLRW background;
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Stochastic Formalism

Quantifying how quantum noises modify the long-wavelength (or

coarse-grained) field

Coarse-grained field and momentum (J.Grain and V.Vennin, JCAP

05(2017)045)

ϕ̇ = a−3πϕ + ξϕ , π̇ = −a3V,ϕ + ξπ . (21)

Time-dependent cut-off scale (coarse-graining scale)

kσ = σaH . (22)

Noises (small-wavelength part) described by two-points correlation matrix

Ξf ,g

Ξf ,g = 〈0|ξf ξg |0〉 =
1

6π2

dk3
σ(N)

dN
fk(N)g?k (N) . (23)

Noise growth in a collapsing universe? 17



Quantum noise

Perturbing EOS (note the relation δw = 4xBδx)

δx =
κ√
6H

(
˙δϕ− Aϕ̇− ϕ̇

H
δH

)
. (24)

Correlation matrix of the noise at critical point (B)

Ξx,x = g(ν, λ)
(|ν| − ν)2

σ2|ν|−3 κ2H2
? exp

[
− 3− 2ν

ν − 1/2
(N? − N)

]
. (25)

No noise for ν > 0: adiabatic perturbations (includes power-law

inflation (ν = 3/2) and ekpyrosis (ν = 1/2)).

True at leading and next-to-leading order!

Kinetic-dominated solution (critical point A), λ2 = 6 or ν = 0

Always δx = 0 at first order!

18



Variance of Langevin equations

Formal solutions

Langevin equation at x = xB

x̄ ′ = m(x̄ − xB) + ξ̂x with m =
λ2 − 6

2
. (26)

Variance split into classical/quantum parts

σ2
x(N) =

〈
(x̄(N)− xB)2

〉
= σ2

x,cl(N) + σ2
x,qu(N)

= σ2
x(N?)e2m(N−N?) +

∫ N

N?

dS e2m(N−S)Ξx,x(S)

(27)

• For ν 6= −3/2

σ2
x,qu(N) = h(ν, λ, σ)κ2H2(N)

{
1− exp

[
3 + 2ν

ν − 1/2
(N? − N)

]}
(28)

• For ν = −3/2 (scale-invariant/pressureless collapse)

σ2
x,qu(N) =

3

27π

H2(N)

M2
pl

(N? − N) , (29)
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Quantum Diffusion and Power Spectrum

• Quantum part of variance decays when

3 + 2ν

ν − 1/2
> 0 . (30)

This is the case if either ν > 1/2 or ν < −3/2 (ignore first case:

adiabatic!)

• Shift in spectral index:

ns − 1 =
12w

1 + 3w
=

4(2ν + 3)

3
. (31)

For small positive deviation ε, red spectrum when ν = −3/2− ε.
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Spectral index

When ν = −3/2− ε, where ε is a small positive parameter, w < 0 and

the spectrum becomes redder.

Figure 4: Evolution for ns as function of ν. The horizontal dotted lines enclose

the 68% confidence level of the values of ns measured by Planck collaboration

2018. 21



Maximum lifetime of the collapse phase at the fixed point

Backreaction condition

If σ2
x,qu = 1 =⇒ does quantum noise change the dynamics?

• Pressureless collapse (ν = −3/2)

|H(N)| ≈
√

134

N? − N
Mpl . (32)

Drives away from fixed point below Planck scale if (N? − N) > 134.

• For slightly red spectrum (ν = −3/2− ε, ns < 1): classical

perturbations grow faster

• Example from general solution: radiation-dominated collapse

(ν = −1/2)

|H(N)| ≈ 13

σ
Mpl . (33)

Cannot escape fixed point since σ < 1.
22



Hubble rate evolution

Figure 5: Evolution of the Hubble rate. To get a sensible deviation from the

fixed point we start in, the initial scale must be set at low energy.
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Gauge effects



Gauge transformation

The gauge parameter transforms the field perturbations δφ as (K. A.

Malik and D. Wands, arXiv:0809.4944)

δ̃φUE = δφSF + α
dφ

dη
. (34)

Mechanism

This transformation parameter can

be found by solving the equation

3Hα′ +
(
3H′ +∇2

)
α = S , (35)

in which the conformal Hubble

parameter H is

H = aH =

(
ν − 1

2

)
1

(−η)
. (36)

The source function S is given by

S =
Q
√

2ε1
2MPl

sign(φ̇)

(
H ε2

2
− Q ′

Q

)
.

(37)

We can solve (35) with the general

solution

αk =
1

3H

∫ η

η0

Sk(η′) exp

[
k2

3

∫ η

η′

dη′′

H(η′′)

]
dη′ ,

(38) 24



General case

For the large-scale limit kη � 1

αk ≈ A
(ν − 3/2)1/2

(ν − 1/2)5/2

[
−(−η)ν−|ν|+1 + (−η0)ν−|ν|(−η) + ...

]
. (39)

When η → 0, the leading term in the gauge parameter is the first

inside the brackets, which starts to diverge when ν − |ν|+ 1 < 0.

Let us break down the different scenarios depending on the value of ν.
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Gauge correction for ν > 0, ν 6= 1/2

If ν > 0, the previous condition never holds as ν = |ν|.

αk = − iΓ(ν)

3
√

8πMPl

(ν − 3/2)1/2

(ν − 1/2)5/2

(
2

k

)ν
sign(φ̇)H?(−η?)

3
2−ν (40){

1

4(ν − 1)
k2(−η0)2(−η) +O[k2(−η)3]

}
,

from which we see the gauge correction are negligible in general, and

completely cancels for ν = 3/2. Therefore, the usual slow-roll inflation is

not affected by gauge corrections. Also verified by C. Pattison et al.

arXiv:1905.06300
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Gauge corrections for ν = 1/2

For the ekpyrotic collapse, ν = 1/2, αk diverges, although this happens

due to the choice of the scale factor.

The ekpyrotic collapse is described by the kinetic-dominated

solution x2a = 1 and y2
a = 0.

δx =
κ√
6

[(
1− x2

) ˙δφ

H
+

(
3x4 − 3x2 +

λ2

2
y2

)
δφ

]
. (41)

It is clear that δx = 0 independently of the field transformation, which

means that gauge corrections do not affect the classical configuration.
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Gauge corrections for ν < 0

For ν < 0, the above condition holds if ν < −1/2, which indicates that

collapsing scenarios should worry about gauge corrections.

For ν = −3/2 the gauge parameter (39) in this case becomes

αk =
ik−3/2sign(φ̇)H?(−η?)3

MPl(3× 27)1/2{
− 1

(−η)2
− 2k2

3
+

(−η)

(−η0)3
+

3k2(−η)

4(−η0)
− k2(−η)3

12(−η0)3
+O

[
k4(−η)2

]}
,

(42)

and the leading order field contribution in αk blows up like (−η)−2 when

η → 0.

In order to quantify how the gauge effects can modify the behaviour of

the classical solution for the kinetic variable x , we apply the gauge

transformation into δx .
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Gauge corrections for ν = −3/2

For the matter collapse, the pre-factor in front of the δφ term is equal to

zero, which leave us just with the time derivative term

˙̃δφ

H
=

˙δφ

H
+
φ̇′α + φ′α̇

H

=
3ik−3/2H?(−η?)3

25/2(−η)3

{
1− sign(φ̇)

2
+O

[
k2(−η)5

]}
. (43)

Then, we see the gauge corrections in this scenario are of the form

˙̃δφ/H
˙δφ/H

≈ 1− sign(φ̇)

2
+O[k2(−η)5] , (44)

which means that the gauge effects bring only a constant together with a

vanishing term scaling as (−η)5. Gauge corrections can therefore be

neglected in the pressureless collapse.
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Final considerations



Current results in stochastic collapse

• quantum fluctuations in a collapsing FRW cosmology behave like

inflationary perturbations (Starobinsky 1979 and Wands 1999)

• non-stiff collapse (w < 1) classically unstable / classical lifetime

depends on initial conditions

• quantum fluctuations gives a finite lifetime for w=0 (Frion, Miranda

and Wands, 2019)

• quantum shear backreaction from massless test field for w < −1/9

(Grain and Vennin, 2020)
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Summary

Inflation / Ekpyrotic collapse (ν > 0) Pressureless collapse (ν < 0)

δx = 0 (adiabatic perturbation) δx 6= 0 (non-adiabatic perturbation)

• Inflation and Ekpyrotic collapse are both classical and quantum

stable;

• Pressureless collapse is quantum unstable;

• For ν = −3/2, we found the quantum diffusion takes us away from

the critical point if we start the collapse from very low energy scales

and if it lasts more than 134 e-folds;

• Gauge effect can be safely neglected for slow-roll inflation, ekpyrotic

collapse and pressureless collapse;

31



What’s next?

• Connect these results to expanding phase (extend stochastic

formalism to non-monotonic time variable)

• Bounce from stochastic geometry?
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Muito obrigada!
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