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Stochastic motion on a charged particle due to the change
in the background field

@ Stochastic motion induced by a change in the background field,
originally proposed by Ford & Yu (2004) [arXiv:0406122].

@ Negative dispersion in the velocity — Subvacuum effects.

@ General case of a massive scalar field in D spatial dimensions
[Camargo et al. (2019) arXiv:1906.08322].

@ In this paper we investigated temperature effects, and showed that
increasing temperature facilitates the detection of subvacuum
phenomena.
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Figure: Figures taken from De Lorenci et al. (2014) arXiv:1404.3115
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Green Functions

Important features comes from the investigation of the field products
expectation values in vacuum, which are related to its Green functions:

dPK eiE.A;e—iwAt

G (6.5:¢.%) = Oo(e 2ol )10 = [ oG ()

dPk eiE-AieiwAt
2(27)° w

denoted as the positive and negative frequency Wightman functions. Here

w=vm?+ k2,

G (% t'.2) = (0] (', 2)(t. %) |0) = / @
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Green functions at finite temperature

To introduce temperature, the expectations values are taken over

statistical ensembles. Then, following the procedure by Birrel & Davies
(1984), the Wightman functions are:

G, (£, %, %) = (4(t, R)(t', X)), (3)
G, (t,x:t',X") = (¢(t',x)8(t, X)) .- (4)
Which obey the KMS condition

Gy (t, %t %) = Gy (t+iB, % t',X). (5)
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Some properties of the Green functions

@ Vacuum divergence due to high energy modes.

@ Non-Huygesian character of the massive fields, or when D is even:
Signals propagate with an arbitrary low velocity.

Vg = k/\/ k> + m?

@ Infrared divergence for the massless field when D =1, and, when
temperature is present, also for D = 2.
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Fluctuations in the presence of a perfectly reflective
boundary

In the presence of an infinite Dirichlet's wall at x; = 0, where
gb(t,Xl =0, x2, ...,XD) =0

(1) . _ 1
Gﬁ;Ren(t7X' t,’)_(‘,) - _;Re

D1
m 2
o+
(27riaa'> K%(lmao )]

) Db-1
2 m 2
z E 1 _ +
+7TR6 [(271’[0’/) KDZ_1(Im0'/) (0’/(-)0’, ] .

=1

Here 0" = [(At — i81)? — (AX)?]Y/2, AX being AX when x| — —x].
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The interacting model

The interaction of a non-relativistic scalar charged test particle with the
brackground field is given through

S[6. 94 7. 5] ~5Fl/m{gﬂ_emnm]+0@qu (6)
Which gives
dv; o ad)(Tv )_()
dr & ox; (7)

For the vacuum and thermal equilibrium (v;) = 0. So:

(@upio = tim [0 [at [Cat v @
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Henceforth, in order to describe a more realistic system, we introduce a
switching function F(t), such that

/ dtF(t) = 7. (9)
The fluctuations are now given by
2 o] o)
(Av)))p = %an;/ [;{aax,/ th(t)/ dt'F(') Gy pen(t, X ', 2) | -

(10)

11/38



Switching Function

A suitable choice is the generalized Lorentzian

F(t) = — (11)

1+ ()]

with ¢, = (2n/7)sin(7/2n). Which defines the transition time
ot (2n—1\% (n+1)(n—1) Z
T2 ( n+1 ) {(H\/l (2n+1)(2n—1)>
(n+1)(n—1) 2
B (1 a \/1 ~(@n+1)(2n - 1)) ] - (12)
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The Fourier transform of F,(,l)(t) is given by

~(1) . & ot D . ITTCh . —iwTn,q/2
BY@ = [ e ) = TN e (13

—00 g=n

with ¢, , = expli(7/2n)(1 + 2p)].
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Another choice of switching function is

1 t —t
Fg)(t) = [arctan <T> + arctan (TT )] . (14)
S s

with fourier transform given

ﬁ@NW)ZAi(1—e—MTp—%WM (15)
1w

This switching function is useful because the transition time is a parameter
and does not change with the interaction time.
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Dispersions due to a pure thermal bath

In order to obtain a closed expression we first choose the switching
function F,(,l)(t). Which gives:

2 2n—-1 o

<(AVi)2>(D1,)thermal = |: T/ﬁ TrC":| Z an,Pwn q

D1
’8 p,g=n |=1

D+1

X _mB KD2+1< B —3/> (16)

27r\/—a,2

where a; = (7/28)(¢np — V1 4) — il. Note that, when 3 — 0o or m — oo
the dispersions are exponentially suppressed.
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Dispersions due to a pure thermal bath
For D=1, and mg =1
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Dispersions due to a pure thermal bath
Here D = 2, and n = 20.
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Dispersions due to a pure thermal bath
Here D = 3, and n = 20.
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Dispersions due to a boundary at finite temperature

In a physical setup, the thermal bath can be detached from the insertion
of the boundary. Thence, we investigate the boundary contributions to the
fluctuations, given by

<(AVi)2>D,boundary = <(AVi)2>D,Vacuum + <(Avi)2>D,miX6d' (17)

The pure thermal contribution will be only the residual dispersions, which
can be zero for 75 long enough.
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First, using the switching function F,Sl)(t), the mixed contribution to the
fluctuations is

2 2
2\ (1) 2 (1/x)mcn
(AN s =~ 1 ()
D+1
2n—1 oo 2

y mx
XY nptng | —F— Koy (2mx\/1 —’yl2> , (18)
p.q=n I=1 4my /1 — v}

1
<(AVL)2>($,)mixed = 87sz<(Av||)2>(D1-)|-2,mixed - <(AVH)2>(D,)mixed (19)

where we have defined v, = (7/4x)(Vnp — ¥5, 4) — il(8/2x).
This contributions vanishes as 8 — oo or m — oo.
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The vacuum contribution is just half the mixed term with / = 0. Thence:

D ,vacuum XD—1 2n

(Av)»Y) __ & <(7'/X)7rc,,>2

D+1
2n—1 2

N mx
XY npthng | ——— Kos (2mx,/ 1 _73> (20)
p,q=n 4m\/1—~3

(AV)DE) = BT (AR — (A (21)

D,vacuum D+2,vacuum D,vacuum"*

As m — oo the vacuum term is also suppressed. However, as it is the
zeroth order term of the summation, the temperature contributions
disappear earlier.
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Dispersions due to a thermal bath in the presence of a boundary
Here D =3, mg =1, and n = 20
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Dispersions due to a thermal bath in the presence of a boundary
For D=3, 8/x=1, and n =20
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Late-time regime

Late-time dispersions due to a pure thermal bath

We find for the pure thermal bath at the late-time regime:

T“_)”;Q((AVI) >therma1 5D 1 Z{ |:27r(27'5/,3—|—/):|

(275/B + 1)(mB)°
2Dn?—1r(§ +1)

D—-1

2

X K% (mp(21s/B+ 1)) — I(D,mB(ZTs/ﬁ—l—l))}

(22)
with

00 u2 _
I(D, &) :/1 Gt il

u

_ %r (_2) - 1) r (g + 1) 1F2 [1/2;3/2,(D + 3)/2; o2 /4]

[Slle]

e M = —gcosec (gD)

+ %F(D)le [-D/2;(1 - D)/2,1—-D/2;a%/4] . -(23)
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Late-time regime

Late-time dispersions due to a boundary at finite
temperature

For the mixed contribution we find:
2g2
axD-1

lim <(AV” )2>(D2,)mixed =

T—00
D—-1

2

(e e}
mx
XZ{ —F— Ko, <2mx\/1+a%>
=1 4y /1 4+« 2

D 00 2 _ 2
_ alma)z / du(“l)ze—%wuo(zmxm)}, (24)
2D-1,5-1 J; u 2
Tim (A2, g = 8 lim (A2,
. 2
= lim (AV)*) P ireas (25)

with a; = 75/x + 15/2x. 26 /38



Late-time regime

The vacuum contribution is then:

lim ((Av))?)@) ___&

00 ,vyacuum 7TXD_1
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Late-time regime

Residual dispersions for D = 3, and mg =1
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Distance behavior of the dispersions

Distance behavior of the dispersions

To investigate how the dispersions behaves with the distance to the plate,
note that, when x/3 < 1, we have

4x2 . )
M = QIBX\/ﬁXZ + </+ I%(wn,p - wn,q)>

= o1+ i35 ne = Vi) = 7. (@8)

(A e = — (A1)

D,mixed — D,thermal’®

So that

and

1 1 1
<(AVJ—)2>(D,)mixed = <(Avi)2>(D,)thermal B 87TX2<(AVf)2>([)—)1—2,thermal'
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For D=3, n=5and mg =1
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Distance behavior of the dispersions

Vacuum vs thermal dominance

To investigate the vacuum versus thermal dominance as the boundary is
approached, we study the mean squared velocity:

(1o = S (FIos = (D= DAV, + (AP )os  (29)
Then, defining the quantity

(v)ps — (V)b
(v?)p

If n, > 1 thermal effects dominate, if 7, < 1, the modified vacuum
contribution is higher.

Np = (30)
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Here D =3, and 7,/ =1

20

(2
3

lim 7
T—00

mf3 = 0.6

— mfF =08

mfB =1

0.0

0.2

1.0

1.2

33/38



Final Remarks

Remarks on the assumptions of the model

Regarding the assumptions made in the model:
o ldealized boundary: Infinite potential barrier.
@ Dirichlet's over Neumann's boundary conditions.

o ((Axj)?) = [y dt [y dt'{vi(t)vi(t')) < x? [Yu & Ford (2004)
[arXiv:0406122], De Lorenci et al. (2016) [arXiv:1606.09134]].

@ Backreaction due to particle's emitted radiation [Yu & Ford (2004)
[arXiv:0406122], De Lorenci et al. (2016) [arXiv:1606.09134]].
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Final Remarks

In Summary

@ Subvacuum effects are present even at finite temperatures and at late
times.

@ In the absence of the thermal bath, temperature increases subvacuum
effects, facilitating its detection.

@ Thermal effects can dominated over the vacuum near the boundary,
for switching times long enough.

@ Mass creates an interesting pattern of domination as the wall is
approached.
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