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● We already have multiple constraints on 
gravity from different probes

● Astrophysical and solar system are the 
tighest

● Cosmological are still not competitive when 
compared to local, how can we improve? 

Introduction

Adapted from 1312.4611
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● A note on screening:

● K = K(\phi)     → make the scalar short-ranged (chameleon)

● K = wBD X       → kinetic term large → suppress matter coupling (BD)

● K + G3(\nabla \phi)      → non-linearities in EoM → 

derivatives suppress scalar field charge

 (k-mouflage, Vainshitein)

Introduction

GR

Accelerated expansion
(Modified Gravity)

LSS



 22

● Path to relativistic effects in Mod. Grav. simulations:
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I.  Use specific gauge (N. Chisari and M. Zaldarriaga 1101.3555) :
•  N-Body gauge (C. Fidler et al: 1505.04756, 1606.05588, …)

II.  Poisson gauge weak-field approximation → K-evolution (F. Hassani, et al: 1910.01104, 
1910.01105)
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Introduction

● Ray tracing (build light cone)

● Galaxy number count (what surveys “observe”)

● LoS relativistic corrections (RSD, WL, ISW, …)

● Mock galaxy catalogs (emulators)

● Covariance matrices (modelling for future 
surveys)
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The N-Body Gauge
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N-Body gauge

● CDM dynamics:

Newtonian (Poisson) gauge

GRNewton



 32

N-Body gauge

● Setting:



 33

N-Body gauge

● Setting:

● Comoving curvature perturbation:



 34

N-Body gauge

● Setting:

● Comoving curvature perturbation:

● Comoving gauge 



 35

N-Body gauge

● Setting:

● Comoving curvature perturbation:

● Comoving gauge 



 36

N-Body gauge

● Setting:

● Comoving gauge

● But CDM has no pressure and no anisotropic stress, then at linear order...



 37

N-Body gauge
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N-Body gauge

Same as Newtonian at 
small scales

Relevant at large scales

Output of the simulation
already in the N-Body gauge 
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● Compute inside hi_class:

● Use Boltzmann equations for photons and neutrinos (massive and massless)

N-Body gauge
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What about DE?
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● Horndeski theory: most general scalar tensor theory with 2nd order equations in both fields.

● Big and messy:

● But can be made simpler:

Modified Gravity

Linear Pert.Braiding

Fixes background
Kineticity

Running Planck Mass
Tensor excess

E. Bellini and I. Sawicki 1404.3713
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● Need to compute anisotropic stress and pressure perturbation of DE!

● Effective Fluid Description:

– Bianchi Identities + Conservation of Energy Momentum Tensor

– Move MG to the RHS of Einstein Equation:

GR Horndeski
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● Where

● These depend on background functions (time dependent only) and synchronous gauge 
metric potentials (already computed in hi_class)

● Can compute            ! And feed it into N-Body codes! 

Modified Gravity as a fluid
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Results
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What about the other scales?
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● Separation small from large → Quasi-Static Aprroximation (QSA), valid deep inside hor.

● QSA: 

 Write the small scale contributions of the dark energy density perturbations and 
anisotropic stress (diff. between Newtonian  Potentials)

Results
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Results

Mitigate the effect of:
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Relativistic effects
Not captured by QSA

Results

Smooth transition to 
Newtonian gravity (QSA)
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● Gravity acoustic oscillations (GAOs) from 10^-3 – 10^-2 1/Mpc
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Results



 90

Conclusions/Future

● Relativistic effects of DE not accounted for in MG simulations can now be readily 
implemented with 

● Kineticity enhances the signal at large scales

● Emergence of GAOs at scales 10^-3 – 10^-2 1/Mpc in the matter power spectrum,

amplified to (possibly) detecteable levels in models with rapid DE sound horizon evolution
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Conclusions/Future

● Move to non-linear scales→ Implement in Newtonian MG simulation (MG-COLA, 
gevolution)

● Other example in the literature of relativistic MG simulation: k-evolution,

so it would be interesting to introduce in k-essence (clustering DE) model to cross-check and 
validate the results.
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Thank you!
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