Do Black Holes Fall in Love? Marc Casals Centro Brasileiro de Pesquisas Físicas (Brazil) University College Dublin (Ireland) In collaboration with Alexandre Le Tiec and Edgardo Franzin Arxiv: 2007.00214 (accepted in PRL) and 2010.15795 #### Index 1. Love Numbers in Newtonian Gravity 2. Love Numbers in General Relativity 3. Love Numbers of *Rotating Black Holes* 4. Conclusions 1. Love Numbers in Newtonian Gravity # Earth & Moon – Love in Newtonian gravity Augustus Love (1909) introduced numbers characterizing the Earth's tides in its response to the Moon's gravitational field # Tidal deformation in Newonian Gravity Gravitational potential of a compact body in isolation #### Gravitational potential of some external tidal field $$U^{\text{tidal}} = -\sum_{\ell=2}^{\infty} \frac{(\ell-2)!}{\ell!} x_1^a \cdots x_{\ell}^a \mathcal{E}_{a_1...a_{\ell}}(t)$$ tidal multipole moments Deformation of non-rotating compact body in an external tidal field induced moments $$U^{\text{resp}} = \sum_{\ell=2}^{\infty} \frac{(2\ell-1)!!}{\ell!} \, \frac{x_1^a \cdots x_{\ell}^a I_{a_1 \dots a_{\ell}}(t)}{r^{2\ell+1}}$$ $$I_{a_1...a_\ell} = \lambda_\ell \ \mathcal{E}_{a_1...a_\ell}$$ tidal Love numbers (TLNs) of the compact body Total gravitational potential by linearity (and decomposing into spherical harmonics $Y_{\ell m}(\theta, \varphi)$) $$U = \mathring{U} + U^{\text{tidal}} + U^{\text{resp}} =$$ $$\frac{M}{r} - \sum_{\ell \geq 2} \sum_{m \leq |\ell|} \frac{(\ell - 2)!}{\ell!} \mathcal{E}_{\ell m} r^{\ell} \begin{bmatrix} 1 + 2k_{\ell} \left(\frac{R}{r}\right)^{2\ell + 1} \end{bmatrix} Y_{\ell m}$$ isolated $$\uparrow \qquad \qquad \uparrow \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad$$ dimensionless TLNs: $k_{\ell} \equiv -\frac{(2\ell-1)!!}{2(\ell-2)!} \; \frac{\lambda_{\ell}}{R^{2\ell+1}}$ It's convenient to use a curvature Weyl scalar $$\psi_0 = C_{\alpha\beta\gamma\delta}\ell^{\alpha}m^{\beta}\ell^{\gamma}m^{\delta} = \sum_{\ell,m}\psi_0^{\ell m}$$ (projection of Weyl tensor $C_{\alpha\beta\gamma\delta}$ on some null vectors ℓ^{α} and m^{β}) In the Newtonian limit, $\lim_{c \to \infty} c^2 \psi_0 = 2 \text{nd order operator on } U$ $$\lim_{c \to \infty} c^2 \psi_0^{\ell m} \propto \mathcal{E}_{\ell m} \, r^{\ell - 2} \left[1 + 2k_\ell \left(\frac{R}{r} \right)^{2\ell + 1} \right]_2 Y_{\ell m}$$ $$\uparrow \qquad \qquad \uparrow \qquad \qquad \text{spin-weighted spherical harm.}$$ $$\text{response} \sim r^{-\ell - 3}$$ 2. Love Numbers in General Relativity #### Tidal moments Consider a *slowly-varying* tidal environment. It can be described by two types of tidal moments constructed from the Weyl tensor: $$\mathcal{E}_{i_1...i_\ell} \propto C_{0\langle i_1|0|i_2;i_3\cdots i_\ell\rangle}$$ (electric-type) $$\mathcal{B}_{i_1...i_\ell} \propto \varepsilon_{jk\langle i_1} C_{i_2|0jk|;i_3...i_\ell\rangle}$$ (magnetic-type; absent in Newonian gravity) #### Induced moments Two types of moments for the compact body: mass-type: $$\mathring{M} + \delta M$$ current-type: $\mathring{S} + \delta S$ background induced moments moments Tidal moments: \mathcal{E}, \mathcal{B} Geroch-Hansen moments (they're coordinate independent): $$g_{lphaeta}\equiv\mathring{g}_{lphaeta}+h_{lphaeta}^{ m resp}$$ background induced moments metric perturbation response $S_{i_1...i_{\ell}} = \mathring{S}_{i_1...i_{\ell}} + \delta S_{i_1...i_{\ell}}$ moments moments #### Tidal Love numbers Expanding the moments $M_{i_1...i_\ell}$ and $S_{i_1...i_\ell}$ into modes: $$M_{\ell m} = \mathring{M}_{\ell m} + \lambda_{\ell m}^{M \mathcal{E}} \, \mathcal{E}_{\ell m} + \lambda_{\ell m}^{M \mathcal{B}} \, \mathcal{B}_{\ell m}$$ $$S_{\ell m} = \mathring{S}_{\ell m} + \lambda_{\ell m}^{SE} \mathcal{E}_{\ell m} + \lambda_{\ell m}^{SB} \mathcal{B}_{\ell m}$$ $\lambda_{\ell m}^{M\mathcal{E},M\mathcal{B},S\mathcal{E},S\mathcal{B}}$: four types of TLNs, connecting electric/magnetic-type tidal moments with mass/current-type induced moments #### TLNs of neutron stars TLNs of neutron stars: - are nonzero (even in the non-rotating case) - depend on their equation of state $$p = K \rho^{1+1/n}$$ pressure density Binnington & Poisson'09 Binnington & Poisson'09 # TLNs of neutron stars have been constrained by gravitational wave observations by LIGO ### Love numbers of non-rotating black holes Non-rotating BH are described by the Schwarzschild metric It's been shown that the (static) TLNs of Schwarzschild BHs are zero (Binnington & Poisson'09; Damour & Nagar'09) So non-rotating BHs do *not* deform under an external (static) tidal field 3. Love Numbers of Rotating Black Holes #### Kerr black hole Kerr metric (in advanced coordinates) $$\mathring{g}_{\alpha\beta} \, \mathrm{d} x^{\alpha} \mathrm{d} x^{\beta} = -\left(1 - \frac{2Mr}{\Sigma}\right) \mathrm{d} v^2 + 2 \mathrm{d} v \mathrm{d} r - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \, \mathrm{d} v \mathrm{d} \phi - \frac{4Mr}{\Sigma} \, a \sin^2 \theta \,$$ $$2a\sin^2\theta\,\mathrm{d}r\mathrm{d}\phi + \Sigma\,\mathrm{d}\theta^2 + \left(r^2 + a^2 + \frac{2Mr}{\Sigma}\,a^2\sin^2\theta\right)\sin^2\theta\,\mathrm{d}\phi^2$$ It describes the gravitational field of a *rotating* black hole with mass M and (intrinsic) ang. mom. a It has an event horizon at $r=r_+$ and an inner horizon at $\ r=r_-$ *All* astrophysical BHs are expected to be rotating and so described by the Kerr metric #### Kerr moments Modes of the Geroch-Hansen moments of (isolated) Kerr black hole: $$\mathring{M}_{\ell} + i \, \mathring{S}_{\ell} = M(i \, a)^{\ell}$$ What about the moments of Kerr in an external tidal environment? # Strategy for calculating the Kerr TLNs Tidal moments: $$\mathcal{E},\mathcal{B}$$ \downarrow Induced response: $\psi_0^{\mathrm{resp}} \longrightarrow \Psi^{\mathrm{resp}} \longrightarrow h_{\alpha\beta}^{\mathrm{resp}}$ Weyl scalar Hertz potential Metric perturbation Perturbed Kerr metric $$g_{\alpha\beta} \equiv \mathring{g}_{\alpha\beta} + h_{\alpha\beta}^{\mathrm{resp}} \qquad \begin{cases} M_{i_1...i_\ell} = \mathring{M}_{i_1...i_\ell} + \delta M_{i_1...i_\ell} \\ S_{i_1...i_\ell} = \mathring{S}_{i_1...i_\ell} + \delta S_{i_1...i_\ell} \end{cases}$$ Modes of the Weyl tensor of perturbed Kerr background $$\psi_0^{\ell m} \propto \left(\mathcal{E}_{\ell m}(v) + i \frac{\ell+1}{3} \mathcal{B}_{\ell m}(v) \right) R_{\ell m}(r) {}_2Y_{\ell m}(\theta, \phi)$$ after matching it at $r \to \infty$ with the tidal environment \mathcal{E}, \mathcal{B} The radial factor satisfies the static ($\omega = 0$) Teukolsky eq. $$x(x+1)R''_{\ell m} + (6x+3+2im\gamma)R'_{\ell m} +$$ $$\[4im\gamma \frac{2x+1}{x(x+1)} - (\ell+3)(\ell-2)\] R_{\ell m} = 0$$ $$x \equiv \frac{r - r_{+}}{r - r_{-}} \qquad \qquad \gamma \equiv \frac{a}{r_{+} - r_{-}}$$ # Sln. of Teukolsky eq. The sln. can be obtained in terms of hypergeometric functions F: $$R_{\ell m} = R_{\ell m}^{\text{tidal}} + 2k_{\ell m} R_{\ell m}^{\text{resp}}$$ $$R_{\ell m}^{\mathrm{tidal}} \propto \frac{x^{\ell}}{(1+x)^2} F\left(-\ell-2, -\ell-2im\gamma, -2\ell; -\frac{1}{x}\right) \sim r^{\ell-2}$$ $$R_{\ell m}^{\text{resp}} \propto \frac{x^{-(\ell+1)}}{(1+x)^2} F\left(\ell-1, \ell+1-2im\gamma, 2\ell+2; -\frac{1}{x}\right) \sim r^{-(\ell+3)}$$ $$k_{\ell m} \equiv -i \, m \, \gamma \, \left(1 - (a/M)^2\right)^{\ell+1/2} \, \frac{(\ell-2)!(\ell+2)!}{2(2\ell)!(2\ell+1)!} \prod_{n=1}^{\ell} (n^2 + 4m^2 \gamma^2)$$ The large-r behaviour of Weyl tensor modes of perturbed Kerr is thus $$\psi_0^{\ell m} \sim \left[\mathcal{E}_{\ell m} + i \frac{\ell+1}{3} \mathcal{B}_{\ell m}\right] r^{\ell-2} \left[1 + 2k_{\ell m} \left(\frac{2M}{r}\right)^{2\ell+1}\right] {}_{2}Y_{\ell m}$$ $$\uparrow \qquad \qquad \uparrow \downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$ "Newtonian" TLNs Cf. the modes in the Newtonian theory: $$\lim_{c \to \infty} c^2 \psi_0^{\ell m} \propto \mathcal{E}_{\ell m} r^{\ell - 2} \left[1 + 2k_\ell \left(\frac{R}{r} \right)^{2\ell + 1} \right] {}_2 Y_{\ell m}$$ #### Kerr TLNs We calculated the *quadrupole* ($\ell = 2$) modes of the induced moments and the TLNs to *linear order in ang. mom. a* $$M_{2m}+i\,S_{2m}\stackrel{.}{=} \left(rac{8}{45}\,i\,m\,a\,M^4 ight)\!(\mathcal{E}_{2m}+i\,\mathcal{B}_{2m})$$ $\lambda_{2m}^{M\mathcal{E}}=\lambda_{2m}^{S\mathcal{B}}$ quadrupole TLNs The corresponding dimensionless TLNs are $$k_{2m}^{M\mathcal{E}} = k_{2m}^{S\mathcal{B}} = -\frac{i \ m}{120} \frac{a}{M}$$ $k_{2m}^{M\mathcal{B}} = k_{2m}^{S\mathcal{E}} = 0$ - (1) They are zero for: - (i) rotating BH in axisymmetric tidal field (m=0) - (ii) non-rotating BH (a = 0) - (2) For, e.g., a = 0.1M it's $$|k_{2,\pm 2}| \approx 2 \times 10^{-3}$$ — Kerr BHs are "rigid" (3) TLNs purely imaginary ——— the BH tidal bulge is rotated by 45° in relation to the tidal perturbation (tidal lag) #### Induced moments We calculated the tidally-induced quadrupole moments $$\delta M_{ij} \doteq \lambda_{ijkl} \, \mathcal{E}^{kl} \doteq \frac{16}{45} \, a \, M^4 \, \mathcal{E}^k_{\ (i} \, \varepsilon_{j)kl} \hat{s}^l$$ $$\delta S_{ij} \doteq \lambda_{ijkl} \, \mathcal{B}^{kl} \doteq \frac{16}{45} \, a \, M^4 \, \mathcal{B}^k_{\ (i} \, \varepsilon_{j)kl} \hat{s}^l$$ where the tidal Love tensor is $$\lambda_{ij\langle kl\rangle} \doteq -\frac{16}{45} a M^4 \delta_{(i|\langle k} \varepsilon_{l\rangle|j)q} \hat{s}^q$$ So rotating BHs *do* deform under an external (static) tidal environment (as opposed to non-rotating BHs) In particular, during the inspiral of two rotating BHs, each one acts as a tidal environment for the other one and so each one "falls in Love" with its companion Credit: ESA-C.Carreau # Tidal torquing Consider an *arbitrary* spinning body in a tidal environment \mathcal{E},\mathcal{B} The average rate of change of its angular momentum (tidal torquing) is (Thorne&Hartle'80): $$M\langle \dot{a}\rangle = -\varepsilon^{ijk}\hat{s}_i \langle M_{jl}\mathcal{E}^l_k + S_{jl}\mathcal{B}^l_k \rangle$$ Introducing M_{jl} , S_{jl} in it by our values for the induced Kerr moments $$M\langle \dot{a}\rangle \doteq -\frac{8}{45} M^4 a \left[2\langle \mathcal{E}_{ij}\mathcal{E}^{ij} + \mathcal{B}_{ij}\mathcal{B}^{ij} \rangle - 3\langle \mathcal{E}_{ij}\hat{s}^j \mathcal{E}^{ik}\hat{s}_k + \mathcal{B}_{ij}\hat{s}^j \mathcal{B}^{ik}\hat{s}_k \rangle \right]$$ # Purely dissipative So the induced Kerr moments that we found lead to a dissipative tidal torquing effect. In principle, it's possible that they also contain conservative effects However, since our results, it's been shown within Effective Field Theory that our effect is purely dissipative (eg, Chia'21; Goldberger, Li & Rothstein'21) This means that this Kerr tidal deformation is probably too small to be observed by LIGO or LISA during a black hole binary inspiral Credit: ESA-C.Carreau #### Conclusions TLNs tell us how much a compact object deforms under a tidal field TLNs of neutron stars have been constrained by LIGO, thus providing information about their equation of state Non-rotating BHs do *not* tidally deform (their static TLNs are zero) Rotating BHs do tidally deform (their static TLNs are nonzero) This tidal deformation induces torquing and is a purely dissipative effect # Obrigado!