# Observational constraints on the slope of the radial acceleration relation at low accelerations

Kyle Oman (Durham ICC)

Margot Brouwer (Kapteyn Institute)
Aaron Ludlow (ICRAR)
Julio Navarro (Victoria)

## The Tully-Fisher relation



- Absolute magnitude vs.
   21-cm line width.
- ≈ stellar mass vs. dynamical mass.

## The baryonic Tully-Fisher relation



- Replaces the 21-cm line width with "V-flat".
  - Spatially resolved observations allow better estimates of dynamical mass.
- Replaces absolute magnitude with  $M_{\star} + M_{\rm gas}$  .

## RAR: spatially resolved BTFR



- Repalce  $M_{\rm b}$  with  $g_{\rm bar} = G M_{\rm b}/r^2$
- Replace  $V_{
  m f}$  with  $g_{
  m obs} = V_{
  m f}^2/r$
- Plot a curve (implicitly a function of radius) for each galaxy, instead of a single point.
- Swap the axes.









$$g_{\text{obs}} = \frac{g_{\text{bar}}}{1 - e^{-\sqrt{g_{\text{bar}}/g_{\dagger}}}}$$

$$g_{\dagger} = 1.2 \times 10^{-10} \,\mathrm{m \, s^{-2}}$$

 A fundamental link between visible mass and mass inferred from motion?



McGaugh et al. (2016)

#### The low-acceleration RAR



# The RAR as a predictor of baryons



# The RAR as a predictor of baryons



# The RAR as a predictor of baryons



#### Constraints: rotation curves



- Density profile steeper than isothermal == declining rotation curve
- Steeper than  $V_{\rm circ} \propto r^{-\frac{1}{2}}$  should be impossible (regardless of the RAR)

#### Constraints: Milky Way rotation curve



#### Constraints: Milky Way rotation curve





#### Constraints: Milky Way rotation curve



#### More constraints





#### More constraints



## Galaxy-galaxy weak lensing



### Galaxy-galaxy weak lensing



### Galaxy-galaxy weak lensing



## Galaxy-galaxy weak lensing (GAMA)



Galaxy-galaxy weak lensing (KiDS)



Brouwer, KO et al. (in prep)

## Galaxy-galaxy weak lensing (KiDS)



Brouwer, KO et al. (in prep)

#### Summary

- All constraints point to weak evidence for a break to a steeper slope in the low-acceleration RAR improve data and/or models.
- Weak lensing is promising, we are working on this (Brouwer, KO et al., in prep.).
- Strong constraints probably possible from the outer Milky Way with existing data & dedicated modelling.

#### Appendix: MOND & external fields



 The dSphs cannot be both on the RAR and consistent with its slope.





Lelli et al. (2016)