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Notations

We use units c = 1, which means that 1 light-year (ly)=1 year '
3.16× 107 sec =9.46× 1015 m.

Another useful unit is the parsec ' 3.09× 1016 m ' 3.26 ly.
The mass of the sun is M� ' 1.99× 1033 g and its Schwarzschild

radius 2GN M� ' 2.95 km ' 9.84× 10−6 sec.
We adopt the “mostly plus” ignature, i.e. the Minkowski metric is

ηµν = diag(−, +, +, +) ,

the Christoffel symbols is

Γρ
µν =

1
2

gρα
(

gαµ,ν + gαν,µ − gµν,α
)

,

the Riemann tensor is

Rµ
νρσ = Γµ

νσ,ρ − Γµ
νρ,σ + Γµ

αρΓα
νσ − Γµ

ασΓα
νρ ,

with symmetry properties

Rµνρσ = −Rνµσρ = −Rµνσρ ,
Rµ

νρσ + Rµ
ρσν + Rµ

σρν = 0 ,

which gives (4 × 3/2)2 − 4 × 4 = 20 independent components,

which in d + 1 dimensions turn out to be
(

(d+1)d
2

)2
− (d+1)2d(d−1)

6 =
(d+1)2d(d+2)

12 .
The Ricci tensor is

Rµν = Rα
µαν ,

the Ricci scalar
R = Rµνgµν ,

the Einstein tensor
Gµν = Rµν −

1
2

gµνR ,

the Weyl tensor

Cαβ
µν = Rαβ

µν − 2δ
[α
[µRβ]

ν] +
1
3

δ
[α
[µδ

β]
ν] R ,
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which has 10 components in 3 + 1 dimensions or (d+1)2d(d+2)
12 −

(d+1)(d+2)
2 = (d + 2)(d + 1) d2+d−6

12 in d + 1 dimensions.
Greek indices α, . . . ω run over d + 1 dimensions, Latin indices

a, . . . i, j, . . . over d spatial dimensions.
Fourier transform in d dimensions are defined as

F(k) =
∫

ddxF(x)e−ik·x ,

F(x) =
∫ ddk

(2π)d F(k)eik·x =
∫

k
F(k)eik·x .

We will denote the modulus of a generic 3-vector w by w ≡ |w|.
Fourier transform over time is defined as

F(ω) =
∫

dtF(t)eiωt ,

F(t) =
∫ dω

2π
F(ω)e−iωt .



Introduction

The existence of gravitational waves (GW) is an unavoidable prediction
of General Relativity (GR): any change to a gravitating source must be
communicated to distant observers no faster than the speed of light, c,
leading to the existence of gravitational radiation, or GWs.

The more precise evidence of a system emitting GWs comes from
the celebrated “Hulse-Taylor” pulsar 1, where two neutron stars are 1 R A Hulse and J H Taylor. Discovery of

a pulsar in a binary system. Astrophys. J.,
195:L51, 1975

tightly bound in a binary system with the observed decay rate of their
orbit being in agreement with the GR prediction to about one part in
a thousand 2, see also 3 for more examples of observed GW emission 2 J. M. Weisberg and J. H. Taylor. Obser-

vations of post-newtonian timing effects
in the binary pulsar psr 1913+16. Phys.
Rev. Lett., 52:1348, 1984

3 M. Burgay, N. D’Amico, A. Possenti,
R. N. Manchester, A. G. Lyne, B. C. Joshi,
M. A. McLaughlin, and M. Kramer
et al. An increased estimate of the
merger rate of double neutron stars
from observations of a highly relativistic
system. Nature, 426:531, 2003; M. Kramer
and N. Wex. The double pulsar
system: A unique laboratory for gravity.
Class. Quant. Grav., 26:073001, 2009;
A. Wolszczan. A nearby 37.9-ms
radio pulsar in a relativistic binary
system. Nature, 350:688, 1991; I. H.
Stairs, S. E. Thorsett, J. H. Taylor, and
A. Wolszczan. Studies of the relativistic
binary pulsar psr b1534+12: I. timing
analysis. Astrophys. J., 581:501, 2002; and
J.J. Hermes, Mukremin Kilic, Warren R.
Brown, D.E. Winget, Carlos Allende
Prieto, et al. Rapid Orbital Decay in
the 12.75-minute WD+WD Binary
J0651+2844. 2012

from pulsar and white dwarf binary systems and sec. 6.2 of 4 for a

4 M. Maggiore. Gravitational Waves.
Oxford University Press, 2008

pedagogical discussion.
A network of earth-based, kilometer-sized gravitational wave

observatories, is currently under development: the two Laser Inter-
feromenter Gravitational-Wave Observatories (LIGO) in the US (see
www.ligo.org) and the Virgo interferometer in Italy (www.virgo.infn.it)
have been taking data at unprecedented sensitivities for several years
and are now undergoing upgrades to their advanced stage, see e.g. 5

5 R Sturani. Ligo/virgo/geo/kagra
science. In P Binétruy, G Auger, and
E. Plagnol, editors, 9th LISA Symposium,
Paris, volume 467 of ASP Conference
Series, pages 293–302. Astronomical
Society of the Pacific, 2012. URL
http://www.apc.univ-paris7.fr/

Downloads/lisa/aspvolume.pdf

for a recent review (another smaller detector belonging to the net-
work is the German-British Gravitational Wave Detector GEO600,
www.geo600.uni-hannover.de). The gravitational detector network is
planned to be joined by the Japanese KAGRA (http://gwcenter.icrr.u-
tokyo.ac.jp/en/) detector by the end of this decade and by an additional
interferometer in India (http://www.gw-indigo.org) by the beginning
of the next decade. The advanced detector era is planned to start in
the year 2015 and it is expected that few years will be necessary to
reach planned sensitivity, which should allow several detections of GW
events per year 6.

6 LIGO Scientific and Virgo Collabo-
rations. Predictions for the rates of
compact binary coalescences observable
by ground-based gravitational-wave
detectors. Class. Quant. Grav., 27:173001,
2010

The output of such observatories is particularly sensitive to the
phase Φ of GW signals and focusing on coalescing binary systems, it is
possible to predict it via

Φ(t) = 2
∫ t

ti

ω(t′)dt′ , (1)

where ω is the angular velocity of the individual binary component
and ti stands for the time the signal with increasing frequency enters

http://www.apc.univ-paris7.fr/Downloads/lisa/aspvolume.pdf
http://www.apc.univ-paris7.fr/Downloads/lisa/aspvolume.pdf
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the detector band-width. Note the factor 2 between the GW phase Φ
and the orbital angular velocity ω.

Binary orbits are in general eccentric, but at the frequency we
are interested in (> 10Hz) binary system will have circuralized,
see sec. 4.1.3 of 7 for a quantitative analysis of orbit circularization. 7 M. Maggiore. Gravitational Waves.

Oxford University Press, 2008For circular orbit the binding energy can be expressed in terms of
a single parameter, say the relative veloicity of the binary system
components v, which by the virial theorem v2 ' GN M/r, being GN

the standard Newton constant, M the total mass of the binary system,
and r the orbital separation between its constituents. Note that the
virial relationship, or its equivalent (on circular orbits) Kepler law
ω2 ' GN M/r3, are not exact in GR, but only at Newtonian level.

At Newtonian level (for spin-less binary constituents) one has for
the energy E of circular orbits:

E(v) = −1
2

ηMv2
(

1 + ev2(η)v2 + ev4(η)v4 + . . .
)

, (2)

where η ≡ m1m2/M2 is the symmetric mass ratio and the evn(η)
coefficients stand for GR corrections to the Newtonian formula, and
only even power of v are involved for the conservative Energy. For the
radiated flux F(v) the leading term is the Einstein quadrupole formula,
which we will derive in sec. , that in the circular orbit case reduces to

F(v) =
32η2

5GN
v10
(

1 + fv2(η)v2 + fv3(η)v3 + . . .
)

. (3)

Note that using v = ωr together with the virial relation we have

v = ωr =⇒ ω ' 1
GN M

v3 , (4)

allowing to re-write (note that during the coalescence v increases
monotonically) eq. (1) as

Φ(v) ' 2
GN M

∫ v

vi

v3 dE/dv
dE/dt

dv =
5

16η

∫ v

vi

1
v6

(
1 + pv2 v2 + pv3 v3 + . . .

)
dv , (5)

where we used dE/dt = −F. Since the phase has to be matched with
O(1) precision, corrections at least O(v6) must be considered.

The aim of this course is to show how to compute the E, F functions
at required perturbative order. We thus have to treat the binary
problem perturbatively, the actual expansion parameter will be
(GN Mπ fGW) = (GN Mω)1/3 ' v, which represents an expansion
around the Minkowski space. Such perturbative expansion of GR has
been proven very useful to treat the binary problem and it goes under
the name of post-Newtonian (PN) expansion to GR.

The approach to solving for the dynamics of the two body problem
adopted here relies on an effective field theory methods, originally
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proposed in 8. The two body problem is a system which exhibits 8 Walter D. Goldberger and Ira Z.
Rothstein. An Effective field theory of
gravity for extended objects. Phys.Rev.,
D73:104029, 2006

a clear separation of scales: the size of the compact objects rs, like
black holes and/or neutron stars, the orbital separation r and the
gravitational wave-length λ. Using again the virial theorem the
hierarchy rs < r ∼ rs/v2 < λ ∼ r/v can be established.

The author of the present notes recommends the following reviews:
for a review of the PN theory see 9, for a pedagogical book on GWs 9 Luc Blanchet. Gravitational radiation

from post-newtonian sources and
inspiralling compact binaries. Living
Reviews in Relativity, 9(4), 2006. URL
http://www.livingreviews.org/

lrr-2006-4

see 10, for an astrophysics oriented review on GWs see 11, for a data-

10 M. Maggiore. Gravitational Waves.
Oxford University Press, 2008

11 B.S. Sathyaprakash and B.F. Schutz.
Physics, Astrophysics and Cosmology
with Gravitational Waves. Living Rev.Rel.,
12:2, 2009

analysis oriented review see 12, for reviews on effective field theory

12 Alessandra Buonanno. Gravitational
waves. 2007. URL http://arxiv.org/

abs/arXiv:0709.4682

methods for GR see 13 and 14.

13 W. D. Goldberger. Les houches
lectures on effective field theories and
gravitational radiation. In Les Houches
Summer School - Session 86: Particle
Physics and Cosmology: The Fabric of
Spacetime, 2007

14 Stefano Foffa and Riccardo Sturani.
Effective field theory methods to model
compact binaries. 2013b. URL http:

//arxiv.org/abs/arXiv:1309.xxxx

These are the notes of the course held at ICTP-SAIFR in August
2013 and they are not meant in any way to replace or improve the
extensive literature existent on the topic but rather to collect in single
document the material relevant for this course, which could otherwise
be found scattered in different places.

http://www.livingreviews.org/lrr-2006-4
http://www.livingreviews.org/lrr-2006-4
http://arxiv.org/abs/arXiv:0709.4682
http://arxiv.org/abs/arXiv:0709.4682
http://arxiv.org/abs/arXiv:1309.xxxx
http://arxiv.org/abs/arXiv:1309.xxxx




General Theory of GWs

Expansion around Minkowski

We start by recalling the Einstein eqations

Rµν −
1
2

gµνR = 8πGNTµν , (6)

however it will be useful for our purposes to work also at the level of
the action

SEH =
1

16ΠGN

∫
dtddx

√
−g R , (7)

Sm → δSm =
1
2

∫
dtddx

√
−gTµνδgµν . (8)

Here we focus on an expansion around the Minkowski space-time

gµν = ηµν + hµν |hµν| � 1 , (9)

and we are interested in a systematic expansion in powers of hµν. As
in the binary system case the metric perturbation |hµν| ∼ GNm/r ∼ v2,
a suitable velocity expansion will have to be considered.

GR admits invariance under general coordinate transformations

xµ → x′µ = xµ + ξµ(x) , (10)

which change the metric according to

gµν(x)→ g′µν(x′) = gρσ(x)
∂xρ

∂x′µ
∂xσ

∂x′ν
hµν(x)→ h′µν(x′) = hµν(x)−

(
∂µξν + ∂νξµ

)
.

(11)

At linear order around a Minkoswki background we have (h ≡ ηµνhµν)

Rµνρσ =
1
2
(
∂ν∂ρhµσ + ∂µ∂σhνρ − ∂µ∂ρhνσ − ∂ν∂σhµρ

)
,

Rµν =
1
2

(
∂ρ∂µhρ

ν + ∂ρ∂µhρ
ν −�hµν − ∂µ∂νh

)
,

R = ∂µ∂νhµν −�h ,

Gµν =
1
2

(
∂ρ∂µhρ

ν + ∂ρ∂µhρ
ν −�hµν − ∂µ∂νh− ηµν∂ν∂νhµν + ηµν�h

)
,

(12)
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and we remind that with the metric signature adopted here � =
∂i∂

i − ∂2
t .

The formula for Gµν can be used to write the Einstein equations as

�h̄µν + ηµν∂ρ∂σ h̄ρσ − ∂µ∂ρ h̄σ
ν − ∂µ∂ρ h̄σ

ν = −16πGNTµν (13)

whre h̄µν ≡ hµν − 1
2 ηµνh which transforms as

h̄µν → h̄′µν = h̄µν − ξµ,ν − ξν,µ + ηµνξα
α .

Thanks to the gauge freedom it is always possible to go to a class of
gauges specified by the Lorentz condition

∂µ h̄µν = 0 , (14)

for instance by choosing �ξµ = ∂ν h̄µν we can impose ∂µ h̄′µν = 0. Note
that in this way we have not completely fixed the gauge as we can
always perform a transformation with �ξµ = 0 and still remain in the
Lorentz gauge class, in which the equation of motions assume the very
simple form

�h̄µν = −16πGNTµν , (15)

showing that in this class of gauges all gravity components satisfy a
wave-like equation. However we will see later in this section that
working with gauge invariant variables (though non-local) shows
that only 2 degrees of freedom are physical and radiative, 4 more are
physical and non-radiative and finally 4 are pure gauge, and can be
killed by the Lorentz condition in eq. (14), for instance.

It will be useful to solve eq. (15) by using the Green function G with
appropriate boundary conditions, where the G is defined as

�xG(x− y) = δ(4)(x− y) . (16)

The explicit form of the Green functions with time-retarded and and
time-advanced boundary conditions are in the direct space (see e.g.
sec. 6.4 of 15, with a pre-factor different by −4π becasue of a different 15 John David Jackson. Classical Electrody-

namics. John Wiley & Sons, iii edition,
1999

definition in eq. (16)

Gret(t, x) = −δ(t− r)
1

4πr
,

Gadv(t, x) = −δ(t + r)
1

4πr
,

(17)

where r ≡ |x| > 0 (note that Gret(t, x)) = Gadv(−t, x). By solving
ex. 3,4 one can show that these are indeed Green functions for the
eq. (16). For the Feynman prescription of the Green function GF see
ex. 5, where the motivated student is asked to demonstrate that the GF

ensures pure incoming wave at past infinity and pure outgoing wave
at future infinity.
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Let us now focus on the wave eq. (15) in the vacuum case

�h̄µν = 0 (18)

and define

ξµν = ∂νξµ + ∂µξν − ηµν∂αξα . (19)

Now �ξµ = 0 =⇒ �ξµν = 0, with δh̄µν = ξµν. Since now the free
wave equation is satisfied by both the gravitational field h̄µν and by
the residual gauge transformation parametrized by ξµ that preserves
the Lorentz condition, we can use the four available ξµ to set four
conditions on h̄µν. In particular ξ0 can be used to make h vanish
(so that h̄µν = hµν) and the three ξi can be used to make the three
h̄0i vanish. The Lorentz condition eq. (14) for µ = 0 will now look
like ∂0h00 = 0, which means that h00 is constant in time, hence not
contributing to any GW. In conclusion, in vacuum one can set

h0µ = h = ∂ihij = 0 , (20)

defining the transverse traceless, or TT gauge, which then describe only
the physical GW propagating in vacuum. For a wave propagating
along the µ = 3 axis, for instance, the wave eq. (15) admits the solution
hµν(t− z) and the gauge condition ∂jhij = 0 reads hi3 = 0. In terms of
the tensor components we have

h(TT)
µν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 . (21)

Given a plane wave solution h(GW)
kl propagating in the generic n̂

direction outside the source, which is in the Lorentz gauge, but not
yet TT-ed, its TT form can be obtained by applying the projector Λij,kl

defined as

Λij,kl(n̂) =
1
2

[
PikPjl + Pil Pjk − PijPkl

]
,

Pij(n̂) = δij − ninj ,
(22)

according to

h(TT−GW)
ij = Λij,klh

(GW)
kl . (23)

The Λ projector ensures transversality and tracelessness of the result-
ing tensor (starting from a tensor in the Lorentz gauge!).

The TT gauge cannot be imposed there where Tµν 6= 0, as we
cannot set to 0 any component of h̄µν which satisfies a �h̄µν 6= 0
equation by using a ξµ which satisfies a �ξµ = 0 equation (and hence
�ξµν = 0).
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Radiative degrees of freedom of hµν

Following sec. 2.2 of 16 we show that the gravitational perturbation 16 Eanna E. Flanagan and Scott A.
Hughes. The basics of gravitational
wave theory. New J. Phys., 7:204, 2005

hµν has 6 physical degrees of freedom: 4 constrained plus 2 radiative.
The argument is based on a Minkowski equivalent of Bardeen’s
gauge-invariant cosmological perturbation formalism.

We begin by defining the decomposition of the metric perturbation
hµν, in any gauge, into a number of irreducible pieces. Assuming that
hµν → 0 as r → ∞, we decompose hµν into a number of irreducible

quantities φ, βi, γ, H, εi, λ and h(TT)
ij via the equations

h00 = 2φ , (24)

h0i = βi + ∂iγ , (25)

hij = h(TT)
ij +

1
3

Hδij + ∂(iε j) +
(

∂i∂j −
1
3

δij∇2
)

λ , (26)

together with the constraints

∂iβi = 0 (1 constraint) (27)

∂iεi = 0 (1 constraint) (28)

∂ih
(TT)
ij = 0 (3 constraints) (29)

δijh(TT)
ij = 0 (1 constraint) (30)

and boundary conditions

γ→ 0, εi → 0, λ→ 0, ∇2λ→ 0 (31)

as r → ∞. Here H ≡ δijhij is the trace of the spatial portion of the

metric perturbation. The spatial tensor h(TT)
ij is transverse and traceless,

and is the TT piece of the metric discussed above which contains
the physical radiative degrees of freedom. The quantities βi and ∂iγ

are the transverse and longitudinal pieces of hti. The uniqueness
of this decomposition follows from taking a divergence of Eq. (25)
giving ∇2γ = ∂ihti, which has a unique solution by the boundary
condition (31). Similarly, taking two derivatives of Eq. (26) yields the
equation 2∇2∇2λ = 3∂i∂jhij −∇2H, which has a unique solution by
Eq. (31). Having solved for λ, one can obtain a unique εi by solving
3∇2εi = 6∂jhij − 2∂i H − 4∂i∇2λ.

The total number of free functions in the parameterization (24) –
(26) of the metric is 16: 4 scalars (φ, γ, H, and λ), 6 vector components
(βi and εi), and 6 symmetric tensor components (h(TT)

ij ). The number of
constraints (27) – (30) is 6, so the number of independent variables in
the parameterization is 10, consistent with a symmetric 4× 4 tensor.

We next discuss how the variables φ, βi, γ, H, εi, λ and h(TT)
ij

transform under gauge transformations ξa with ξa → 0 as r → ∞. We
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parameterize such gauge transformation as

ξµ = (ξt, ξi) ≡ (A, Bi + ∂iC) , (32)

where ∂iBi = 0 and C → 0 as r → ∞; thus Bi and ∂iC are the
transverse and longitudinal pieces of the spatial gauge transformation.
Decomposing this transformed metric into its irreducible pieces yields
the transformation laws

φ → φ− Ȧ , (33)

βi → βi − Ḃi , (34)

γ → γ− A− Ċ , (35)

H → H − 2∇2C , (36)

λ → λ− 2C , (37)

εi → εi − 2Bi , (38)

h(TT)
ij → h(TT)

ij . (39)

Gathering terms, we see that the following combinations of these
functions are gauge invariant:

Φ ≡ −φ + γ̇− 1
2

λ̈ , (40)

Θ ≡ 1
3

(
H −∇2λ

)
, (41)

Ξi ≡ βi −
1
2

ε̇i ; (42)

h(TT)
ij is gauge-invariant without any further manipulation. In the

Newtonian limit Φ reduces to the Newtonian potential ΦN , while
Θ = −2ΦN . The total number of free, gauge-invariant functions is 6: 1

function Θ; 1 function Φ; 3 functions Ξi, minus 1 due to the constraint
∂iΞi = 0; and 6 functions h(TT)

ij , minus 3 due to the constraints

∂ih
(TT)
ij = 0, minus 1 due to the constraint δijh(TT)

ij = 0. This is in
keeping with the fact that in general the 10 metric functions contain 6

physical and 4 gauge degrees of freedom.
We would now like to enforce Einstein’s equation. Before doing

so, it is useful to first decompose the stress energy tensor in a manner
similar to that of our decomposition of the metric. We define the
quantities ρ, Si, S, P, σij, σi and σ via the equations

T00 = ρ , (43)

T0i = Si + ∂iS , (44)

Tij = Pδij + σij + ∂(iσj) +
(

∂i∂j −
1
3

δij∇2
)

σ, (45)
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together with the constraints

∂iSi = 0 , (46)

∂iσi = 0 , (47)

∂iσij = 0 , (48)

δijσij = 0, (49)

and boundary conditions

S→ 0, σi → 0, σ→ 0, ∇2σ→ 0 (50)

as r → ∞. These quantities are not all independent. The variables ρ,
P, Si and σij can be specified arbitrarily; stress-energy conservation
(∂aTab = 0) then determines the remaining variables S, σ, and σi via

∇2S = ρ̇ , (51)

∇2σ = −3
2

P +
3
2

Ṡ , (52)

∇2σi = 2Ṡi . (53)

We now compute the Einstein tensor from the metric (24) – (26).
The result can be expressed in terms of the gauge invariant observ-
ables:

G00 = −∇2Θ , (54)

G0i = −1
2
∇2Ξi − ∂iΘ̇ , (55)

Gij = −1
2
�h(TT)

ij − ∂(iΞ̇j) −
1
2

∂i∂j (2Φ + Θ)

+δij

[
1
2
∇2 (2Φ + Θ)− Θ̈

]
. (56)

We finally enforce Einstein’s equation Gµν = 8πTµν and simplify using
the conservation relations (51) – (53); this leads to the following field
equations:

∇2Θ = −8πρ , (57)

∇2Φ = 4π
(
ρ + 3P− 3Ṡ

)
, (58)

∇2Ξi = −16πSi , (59)

�h(TT)
ij = −16πσij . (60)

Notice that only the metric components h(TT)
ij obey a wave-like

equation. The other variables Θ, Φ and Ξi are determined by Poisson-
type equations. Indeed, in a purely vacuum spacetime, the field
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equations reduce to five Laplace equations and a wave equation:

∇2Θvac = 0 , (61)

∇2Φvac = 0 , (62)

∇2Ξvac
i = 0 , (63)

�h(TT),vac
ij = 0 . (64)

This manifestly demonstrates that only the h(TT)
ij metric components —

the transverse, traceless degrees of freedom of the metric perturbation
— characterize the radiative degrees of freedom in the spacetime. Al-
though it is possible to pick a gauge in which other metric components
appear to be radiative, they will not be: Their radiative character is an
illusion arising due to the choice of gauge or coordinates.

The field equations (57) – (60) also demonstrate that, far from a
dynamic, radiating source, the time-varying portion of the physical
degrees of freedom in the metric is dominated by h(TT)

ij . If we expand

the gauge invariant fields Φ, Θ, Ξi and h(TT)
ij in powers of 1/r, then,

at sufficiently large distances, the leading-order O(1/r) terms will
dominate. For the fields Θ, Φ and Ξi, the coefficients of the 1/r pieces
are combinations of the conserved quantities given by the mass∫

d3xT00, the linear momentum
∫

d3T0i and the angular momentum∫
d3x(xiT0j − xjT0i). Thus, the only time-varying piece of the physical

degrees of freedom in the metric perturbation at order O(1/r) is the
TT piece h(TT)

ij .

Although the variables Φ, Θ, Ξi and h(TT)
ij have the advantage of

being gauge invariant, they have the disadvantage of being non-local
(a part from h(TT)

ij computation of these variables at a point requires
knowledge of the metric perturbation hµν everywhere). This non-
locality obscures the fact that the physical, non-radiative degrees of
freedom are causal, a fact which is explicit in Lorentz gauge. One
way to see that the guage invariant degrees of freedom are causal
is to combine the vacuum wave equation eq. (18) for the metric
perturbation with the expression (12) for the gauge-invariant Riemann
tensor. This gives the wave equation �Rαβγδ = 0. Moreover, many
observations that seek to detect GWs are sensitive only to the value of
the Riemann tensor at a given point in space (see sec. ). For example,
the Riemann tensor components Ritjt are given in terms of the gauge
invariant variables as

Ri0j0 = −1
2

ḧ(TT)
ij + Φ,ij + Ξ̇(i,j) −

1
2

Θ̈δij. (65)

Thus, at least certain combinations of the gauge invariant variables are
locally observable.
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Energy of GWs

We have shown that only the TT part of the metric is actually a radia-
tive degree of freedom, i.e. a GW, which is capable of transporting
energy, momentum and angular momentum from the source emitting
them. In order to derive the expression for such quantities we follow
here sec. 1.4 of 17. 17 M. Maggiore. Gravitational Waves.

Oxford University Press, 2008In principle it is not unambigous to separate the background
metric from the perturbation, but a natural splitting between space-
time background and GWs arise when there is a clear separation of
scales: if the variation scale of hµν is λ and the variation scale of the
background is LB � λ a separation is possible. We can e.g. average
over a time scale t̄ >> λ and obtain

R̄µν = 8πGN

(
τµν −

1
2

ηµντ

)
− 〈R(2)〉 , (66)

where R̄µν is the Ricci tensor computed on the background metric (and

then vanishing in an expansion over Minkowski background), and R(2)
µν

is the part of the Ricci tensor quadratic in the GW perturbation (no
part linear in the perturbation survives after averaging). The −〈R(2)〉
in the above equation can be interpreted as giving contribution to an
effective energy momentum tensor of the GWs τµν given by

τµν = − 1
8πGN

〈R(2)
µν −

1
2

ηµνR(2)〉 (67)

(and τ = 〈R(2)〉/(8πGN)). The expression for R(2)
µν is quite lengthy, see

eq. (1.131) of 18, but using the Lorentz condition, h = 0 and neglecting 18 M. Maggiore. Gravitational Waves.
Oxford University Press, 2008terms which vanish on the equation of motion �h̄µν = 0 we have

〈R(2)
µν 〉 = −1

4
〈∂µhαβhαβ∂ν〉 , (68)

τµν =
1

32πGN
〈∂µhαβ∂νhαβ〉 , (69)

This effective energy-momentum tensor is gauge invariant and thus
depend only on h(TT)

ij , giving

τ00 =
1

16πGN
〈ḣ2

+ + ḣ2
×〉

For a plane wave travelling along the z direction we have τ01 = 0 =
τ02 and ∂zh(TT)

ij = ∂0h(TT)
ij and then τ03 = τ00. For a spherical wave

∂rh(TT)
ij = ∂0h(TT)

ij + O(1/r2), so similarly τ0r = τ00.
The time derivative of the GW energy EV (or energy flux dEV/dt)
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can be written as

dEV
dt

=
∫

V
d3x∂0τ00

=
∫

V
d3x∂iτ

0i

=
∫

S
dAniτ

0i =

=
∫

S
dAτ00

(70)

The ouward propagating GW carries then an energy flux F = dE
dt

F =
r2

32πGN

∫
dΩ〈ḣ(TT)

ij ḣ(TT)
ij 〉 (71)

or equivalently

F =
1

16πGN
〈ḣ2

+ + ḣ2
×〉 . (72)

The linear momentum Pi
V of GW is

Pk
V =

∫
d3xτ0i . (73)

Considering a GW propagating radially outward, we have

Ṗi
V = −

∫
S

τ0i , (74)

hence the momentum carried away by the outward-propagating wave
is dPi

dAdt = t0i. In terms of the GW amplitude it is

dPi

dt
= − r2

32πGN

∫
dΩ〈ḣ(TT)

jk ∂ih(TT)
jk 〉 . (75)

Note that, if τ0k is odd under a parity transformation x → −x, then
the angular integral of eq. (75) vanishes. For the angular momentum
of GW we refer to sec. 2.1.3 of 19. 19 M. Maggiore. Gravitational Waves.

Oxford University Press, 2008

Interaction of GWs with interferometric detectors

We now describe the interaction of a GW with a simplified exeper-
imental apparatus, following the discussion of sec. 1.3.3 of 20. In a 20 M. Maggiore. Gravitational Waves.

Oxford University Press, 2008typical interferometer lights goes back and forth in orthogonal arms
and recombining the photons after different trajectories very precise
length measurements can be performed.

The dynamics of a massive point particle can be inferred from the
action

S = −m
∫

dτ =
∫ √

−gµν
dxµ

dλ

dxν

dλ
dλ , (76)



20

whose variation with respect to the particle trajectory xµ gives the
geodesic equation of motion

d2xµ

dτ2 +
1
2

gµα

(
gαν,ρ + gαρ,ν −

1
2

gνρ,α

)
dxν

dτ

dxρ

dτ
. (77)

Let us appy the above equation to the motion of a mirror, at rest at
τ = 0 in the position xm = (L, 0, 0), in a laser interferometer under the
influence of a GW propagating along the z direction:

d2xi

dτ2

∣∣∣∣
τ=0

= − Γi
00

(
dx0

dτ

)2
∣∣∣∣∣
τ=0

. (78)

In the TT gauge Γi
00 = 0, showing that an object initially at rest will

remain at rest even during the passage of a GW. This does not mean
that the GW will have no effect, as the physical distance l between the
the mirror and the beam splitter, say, at xbs = (0, 0, 0) is given by

l =
∫ L

0

√
gxxdx '

(
1 +

1
2

h+(t)
)

L ,

which shows how physical relative distance chage with time (we
have assumed that h+ does not depend on x, which is correct for
λGW � L).

It is instructive to review this derivation in a different frame, the
proper detector frame, whose coordinates allow a more transparent
interpretation, as all physical results are independent of frame choices.
Experimentally one has the mirror and the beam splitter, which
are “freely-falling”, as they are suspended to the ceiling forming
a pendulum with very little friction and low typical frequency (∼
few Hz), meaning that over frequency scale 10− 103 Hz they behave
as freely-falling particles, see fig. 1. Standard rulers on the other
hand are made of tightly bound objects, endowed with friction and
resotring forces. The distance they measue ξ(t) under the influence of
a monochromatic wave frequency ω undergoes oscillation satisfying
the equation

ξ̈(t) + γω0ξ̇(t) + ω2
0ξ(t) = −ω2

2
h0 cos(ωt)L (79)

with solution

ξ(t) =
1
2

Lh0ω2 (ω2 −ω2
0) cos(ωt)− γω0ω sin(ωt)

(ω2 −ω2
0)2 + γ2ω2

0ω2
, (80)

showing that for ω � ω0 the mirror is indeed freely-falling, as it
follows the GW time behaviour.

In the proper detector frame, which is the freely fallig frame for
the observer at the origin at the coordinates, a general metric can be
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written as

ds2 ' −dt2
(

1 + R0i0jxixj + . . .
)
− 2dtdxi

(
2
3

R0ijkxjxk + . . .
)

+dxidxj
(

δij −
1
3

Rijkl xkxl . . .
) (81)

where terms of cubic and higher order in x have been omitted. The
trajectory xµ

0 (τ) = δµ0τ is clearly a geodesic, and we can consider the
geodesic deviation equation, which gives the time evolution separation
of two nearby geodesics xµ

0 (τ) and xµ
0 (τ) + ξµ(τ)

D2ξ i

dτ2 = −Ri
0j0ξ j

(
dx0

dτ

)2

. (82)

In the proper detector frame, the measure of coordinate distances
with respect to the origin gives actually a measure of physical distance
(up to terms ∼ hL3/λ3). The eq.(82) can be recast into

ξ̈ =
1
2

ḧijξ
j , (83)

where an overdot stands for a derivative with respect to t and terms of
order h2 have been neglected. In the proper detector frame, the effect
of GWs on a point particle of mass m placed at coordinate ξ can be
described in terms of a Newtonian force Fi

Fi =
m
2

ḧ(TT)
ij (t)ξ j (84)

(we neglect again the space dependence of h+ as typically GW wave-
length λ� L).

Figure 1: Interferometer scheme.
Light emitted from the laser is shared
by the two orthogonal arms after
going through the beam splitter. After
bouncing at the end mirrors it is
recombined at the photo-detector.

The laser light travels in two orthogonal arms of the interferometer
and the electric fields are finally recombined on the photo-detector.
The reflection off a 50-50 beam splitter can be modeled by multiplying
the amplitude of the incoming field by 1/

√
2 for reflection on one side

and −1/
√

2 for reflection on the other, while transmission multiplies it
by 1/

√
2 and reflection by the end mirrors by −1, see sec. 2.4.1 of 21 21 Andreas Freise and Kenneth A.

Strain. Interferometer techniques for
gravitational-wave detection. Living
Reviews in Relativity, 13(1), 2010. doi:
10.12942/lrr-2010-1. URL http://www.

livingreviews.org/lrr-2010-1

for details.

http://www.livingreviews.org/lrr-2010-1
http://www.livingreviews.org/lrr-2010-1
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Setting the mirrors at positions (Lx, 0, 0) and (0, Ly, 0) and the
beam splitter at the origin of the coordinates, we can compute the
phase change of the laser electric field moving in the x and y cavity
which are eventually recombined on the photo-multiplier. For the
light propagating along the x-axis, using the TT metric (21) for a
z−propagating GW, one has

Lx = (t1x − t0x)−
1
2

∫ t1x

t0x

h+(t′)dt′ ,

Lx = (t2x − t1x)−
1
2

∫ t2x

t1x

h+(t′)dt′ ,
(85)

where t0,1,2 stand respectively for the time when the laser leaves the
beam splitter, bounces off the mirror, returns to the beam splitter. The
time at which laser from the two arms is combined at the beam splitter
is common: t2x = t2y = t2, and using h+(t) = h0 cos(ωGW t) we get

t2 = t0x + 2Lx +
h0

2ωGW
[sin (ωGW(t0 + 2L))− sin (ωGW t0)]

= t0x + 2Lx + h0Lx
sin (ωGW Lx)

ωGW Lx
cos (ωGW(t0 + 2Lx))

(86)

where the trgonometric identity sin(α + 2β) = sin(α) + 2 cos(α +
β) sin β has been used. Using that the phase of the laser field x (y) at
recombination time t2 is the same it had at the time it left the beam
splitter at time t0x (t0y), we can write

E(x)(t2) = −1
2

E0e−iωLt0x =

= −1
2

E0e−iωL(t2−2L)+iφ0+i∆φx
(87)

where

L ≡
Lx + Ly

2
φ0 = ωL(LX − Ly)

∆φx = h0ωLL
sin(ωGW L)

ωGW L
cos(ωGW(t− L)) .

(88)

where in the terms O(h) we have set Lx ' Ly ' L. Analogously for the
field that traveled through the y− arm

E(y)(t2) =
1
2

E0e−iωLt0y =

= 1
2 E0e−iωL(t2−2L)−iφ0+i∆φy

(89)

with ∆φy = −∆φx. The fields Epd recombined at the photo-detector
gives

Epd(t) = E(x)(t) + E(y)(t)
= −iE0e−iωL(t−2L) sin (φ0 + ∆φx) ,

(90)
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with a total power P = P0 sin2 (φ0 + ∆φx(t)). Note that at the other
output of the beam splitter, towards the laser, EL = E(x) − E(y) so that
energy is conserved. The optimal length giving the highest ∆φx is

L =
π

2ωGW
' 750km

(
fGW

100Hz

)−1
. (91)

Actually real interferometers include Fabry-Perot cavities, where the
laser beam goes back and forth several times before being recombined
at the beam splitter, allowing the actual of the photon travel path to
be ∼ 100 km. For discussion of real interferometers with Fabry-Perot
cavities see e.g. sec. 9.2 of 22, with the result that the sensitivity is 22 M. Maggiore. Gravitational Waves.

Oxford University Press, 2008enhanced by a factor 2F/π where F is the finesse of the Fabry-Perot
cavity and typcally F ∼ O(100), giving a measured phase-shift of the
order

∆φFB ∼
4F
π

ωLLh0 '
8F
π

ωL∆L (92)

The typical amplitude h0 that can be measured is of order 10−20

which at the best sensitive frequency gives for the Michelson interfer-
ometer δL ∼ 10−15 km!

The typical GW amplitude emitted by a binary system is

h ∼ GN Mv2/r ' 2.4× 10−22
(

M
M�

)( v
0.1

)2
(

r
Mpc

)−1
(93)

many order of magnitudes small than the earth gravitational field. It is
its peculiar time oscillating behaviour that makes possible its detection.
We will see however in sec. that rather then the instantaneous aam-
plitude of the signal, its integrated vallue will be of interest for GW
detection.

Numerology

Interferometric detectors are very precise and rapidly responsive
ruler, they can detect the change of an arm length down to values of
10−15 m, however not at all frequency scales. At very low frequency
( fGW . 10 Hz) the noise from seismic activity and generic vibrations
degrade the sensitivity of the instrument, whereas at high frequency
laser shot noise does not allow to detect signal with frequency larger
than few kHz. Considering binary systems, which emit according to
the flux given in eq. (3), what is the typical lentgth, mass, distance
scale of the source? Using eq. (4) we obtain

v = (GN Mπ fGW)1/3 ' 0.054
(

M
M�

)1/3 ( fGW
10Hz

)1/3
,

r = GN M(GN Mπ fGW)−2/3 ' 6.4Km
(

M
M�

)1/3 ( fGW
10Hz

)−2/3
.

(94)
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It can also be interesiting to estimate how long it will take to for a
coalescence to take place. Using the lowest order expression for energy
and flux, one has

−ηMv
dv
dt

= − 32
5GN

η2v10 =⇒
dv
v9 =

32η

5GN M
dt =⇒

1
v8

i
− 1

v8
f

=
256η

5GN M
∆t ,

(95)

for the time ∆t taken for the inspiralling system to move from vi to v f .
If vi � v f we can estimate

∆t ' 5GN M
256η

v−8
i ' 1.4× 104sec

1
η

(
M

M�

)−5/3 ( fiGW
10Hz

)−8/3
. (96)

Note that v f can be comparable to vi for very massive systems, which
enter the detector sensitivity band when vi . 1. For an estimate of the
maximum relative binary velocity during the inspiral, we can take the
inner-most stable circular orbit vISCO of the Schwarzschild case, which
gives

vISCO =
1√
6
' 0.41 . (97)

The number of cycles N the GW spends in the detector sensitivity
band can be derived by noting that

E = −1
2

ηM (GN Mπ fGW)2/3 (98)

and from eq. (5)

N(t) =
∫ t

ti

fGW(t)dt′ =⇒

N( fGW) '
∫ fGW

fiGW

f
dE/d f
dE/dt

d f

' 5GN M
96η

∫ fGW

fiGW

(GN Mπ f )−8/3 d f

=
1

32πη
(GN Mπ)−5/3

(
1

f−5/3
iGW

− 1

f−5/3
GW

)

' 1.5× 105 1
η

(
M

M�

)−5/3 ( fiGW
10Hz

)−5/3

(99)

We can finally obtain the time evolution of the GW frequency

ḟGW =
96
5

π8/3η (GN M)5/3 f 11/3
GW (100)

which has solution

fGW(t) =
1

η3/8π

(
5

256
1
|t|

)3/8
GN M−5/8

= 151Hz
1

η3/8

(
M

M�

)−5/8 ( |t|
1sec

)−3/8

,
(101)
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which can be inverted to give

|t∗( f )| = 5
256πη

(
1

πGN Mπ

)5/3
. (102)
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Exercise 1 ** Linearized Riemann, Ricci and Einstein
tensors

Using that the Christoffel symbols at linear level are

Γα
µν =

1
2

(
∂µhα

ν + ∂νhα
µ − ∂αhµν

)
derive eqs.(12)

Exercise 2 *** Retarded Green function I

Show that the two representation of the retarded Green function given
by eq. (17) and

Gret(t, x) = −iθ(t) (∆+(t, x)− ∆−(t, x)) ,

where

∆±(t, x) ≡
∫

k
e∓ikt eikx

2k
are equivalent. Hint: use that∫ ∞

−∞

dk
2π

eikx = δ(x) ,

and that
θ(t)

∫ ∞

−∞

dk
2π

eik(t+r) = 0 for r ≥ 0 .

Exercise 3 *** Retarded Green function II

Use the representation of the Gret obtained in the previous exercise to
show that

Gret(t, x) = −
∫

k

dω

2π

e−iωt+ikx

k2 − (ω + iε)2 ,

where ε is an arbitrarily small positive quantity. Hint: use that

θ(±t) = ∓ 1
2πi

∫ e−iωt

ω± iε
.

Show that Gret is real.
Exercise 4 *** Advanced Green function

Same as the two exercises above for Gadv, with

Gadv(t, x) = iθ(−t) (∆+(t, x)− ∆−(t, x)) ,

Gadv(t, x) = −
∫

k

dω

2π

e−iωt+ikx

k2 − (ω− iε)2 .

Show that Gadv is real.
Exercise 5 ** Feynman Green function I

Show that the GF defined by

GF(t, x) = −i
∫

k

dω

2π

e−iωt+ikx

k2 −ω2 − iε
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is equivalent to

GF(t, x) = θ(t)∆+(t, x) + θ(−t)∆−(t, x) .

Derive the relationship

GF(t, x) =
i
2

(Gadv(t, x) + Gret(t, x)) +
∆+(t, x) + ∆−(t, x)

2
.

Exercise 6 *** Feynman Green function II

By integrating over k the GF in the ∼ 1/(k2 − ω2) representation,
show that GF implements boundary conditions giving rise to field h
behaving as

h(t, x) ∼
∫

dωe−iωt+i|ω|r ,

corresponding to out-going (in-going) wave for ω > (<)0. Since
an ω < 0 solution is equivalent to a ω > 0 solution propagating
backward in time, this result can be interpreted by saying that using
GF results into having pure out-going (in-going) wave for t→ ±∞.

Exercise 7 * TT gauge

Show that the projectors defined in eq. 22 satisfy the relationships

PijPjk = Pik

Λij,klΛkl,mn = Λij,mn ,

which charecterize projectors operator.
Exercise 8 ***** Energy of circular orbits in a Schwarzschild

metric

Consider the Schwarzschild metric

ds2 = −
(

1− 2GN M
r

)
dt2 +

dr2(
1− 2GN M

r

) + r2dΩ2 . (103)

The dynamics of a point particle with mass m moving in such a
background can be described by the action

S = −m
∫

dτ = −m
∫

dλ

√
−gµν

dxµ

dλ

dxν

dλ

for any coordinate λ parametrizing the particle world-line. Using
S =

∫
dλ L, we can write

L = −m

(1− 2GN M
r

)(
dt
dτ

)2
−

(
dr
dτ

)2(
1− 2GN M

r

) − r2
(

dφ

dτ

)2


1/2

.

Verify that L has cyclic variables t and φ and derive the corresponding
conserved momenta.
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(Hint: use gµν(dxµ/dτ)(dxν/dτ) = −1. Result: E = m(dt/dτ)(1−
2GN M/r) ≡ m e and L = mr2(dφ/dτ) ≡ m l).
By expressing dt/dτ and dφ/dτ in terms of e and l, derive the relation-
ship

e2 = (1− 2GN M/r)
(

1 + l2/r2
)

+
(

dr
dτ

)2
.

From the circular orbit conditions ( de
dr = 0 = dr/dτ = 0), derive the

relationship between l and r for circular orbits.
(Result: l2 = r2/( r

M − 3)).
Substitute into the energy function e and find the circular orbit energy

e(x) =
1− 2x√
1− 3x

,

where x ≡ (GN Mφ̇)2/3 is an observable quantity as it is related to the
GW frequency fGW by x = (GN Mπ fGW)2/3.
(Hint: Use

φ̇ =
dφ

dτ
τ̇ =

l
r2

[
1− 2M

r
− r2φ̇2

]1/2

to find that on circular orbits (Mφ̇)2 = (GN M/r)3, an overdot stands
for derivative with respect to t.)
Derive the relationships for the Inner-most stable circular orbit

rISCO = 6GN M = 4.4km
(

M
M�

)
f ISCO =

1
63/2

1
GN Mπ

' 8.8kHz
(

M
M�

)−1

vISCO =
1√
6
' 0.41

Exercise 9 ** Ruler under GW action

Derive the solution (80) to the eq. (79).
Exercise 10 ** Newtonian force exerced by GWs

Derive eq. (83) from eq. (82)
Exercise 11 **** Energy realeased by GWs

Derive the work done on the experimental apparatus by the GW
Newtonian force of eq. (83).



The post-Newtonian expansion in the effective field the-
ory approach

We want to obtain the PN correction to the Newtonian potential due
to GR and we want to work at the level of the equation of motions. The
dynamics for the massive particle (star/black hole) is given by the
world-line action

S = −m
∫

dτ

= −m
∫

dτ

√
−gµν

dxµ

dτ

dxν

dτ

= −m
∫

dt
[
−g00 − 2g0i

dxi

dt
− gij

dxi

dt
dxj

dt

]1/2
(104)

and the dynamics of the gravitational degrees of freedom is given by
the standard Einstein-Hilbert action, expanded to quadratic order

SEH = − 1
64πGN

∫
dtdx

[
∂µhαβ∂µhαβ − ∂µh∂µh + 2∂µhµν∂νh− 2∂µhµν∂ρhρ

ν

]
(105)

Working at the level of e.o.m. we could solve them perturbatively,
by taking as a first approximation 23 23 Note that left hand side of eq. (15)

does not follow from eq. (105), as the
gauge fixing term (109) is missing.�h̄µν = −8πGNTµν , (106)

then using the solution

h̄(N)
µν =

∫
dtd3x′ GRet(t− t′, x− x′)Tµν(t′, x′) (107)

and finally pluggin this solution back into the O(h2) Einstein equation

�h(1PN)
µν ' ∂2

(
h(N)

µν

)2
(108)

but we are going to perform the computation more efficiently.
First we have to impose the gauge condition. The action (105) has to

be completed with a gauge fixing term SGF given by

SGFΓ =
1

32πGN

∫
dtdx

(
∂νhµν −

1
2

∂µh
)2

(109)
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taking the total action to

SEH+GFΓ =
1

64πGN

∫
dtddx hµν Aµνρσ�hρσ (110)

with

Aµνρσ =
1
2
(
ηµρηνσ + ηµσηνρ − ηµνηρσ

)
. (111)

In order to find the Green function for h we need to invert the A
operator, which is straightforwardly done by noting that

Aµναβ Aαβ
ρσ =

1
2
(
ηµρηνσ + ηµσηνρ

)
. (112)

We can use the this Lagrangian construction in order to solve for the h
field, as in ex. 14, but here we want to show how powerful the effective
action method is in determining the dynamics of the 2-body system,
“integrating out” the gravitational degrees of freedom.

Let us pause briefly to introduce some technicalities about Gaussian
integrals that will be helpful later. The basic formula we will need is

∫ ∞

−∞
e−

1
2 ax2+Jxdx =

(
2π

a

)1/2
exp

(
J2

2a

)
. (113)

or its multi-dimensional generalization∫
e−

1
2 xi Aijxj+Jixi dx1 . . . dxn =

(2π)n/2

(detA)1/2 exp
(

1
2

Jt A−1 J
)

. (114)

Other useful formulae are∫
xke−

1
2 ax2+Jxdx =

(
2π

a

)1/2 ( d
dJ

)k
exp

(
J2

2a

)
(115)

from which it follows that∫
x2ne−

1
2 ax2

dx =
(

2π

a

)1/2 ( d
dJ

)2n
exp

(
J2

2a

)∣∣∣∣∣
J=0

=
(2n− 1)!!

an

(
2π

a

)1/2
,

(116)

which also admit a natural generalization in case of x is not a real
number but an element of a vector space. Let us see how this will be
useful in the toy model of massless, non self-interacting scalar field Φ
interacting with a source J:

Stoy =
∫

dtddx
[
−1

2
(∂Φ(t, x))2 + J(t, x)Φ(t, x)

]
=

∫
k

dk0

2π

[
Φ(k0, k)Φ∗(k0, k)

(
k2

0 − k2
)

+ J(k0, k)Φ∗(k0, k)
] (117)

and apply the above eqs.(113–116), with two differences:
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• Here the integration variable is Φ, depending on 2 continous
indices (k0, k), instead of the discrete index i ∈ 1 . . . n

• the Gaussian integrand is actually turned into a complex one, as we
are taking at the exponent

Z0[J] ≡
∫
DΦ exp

{
i
∫

k

dk0

2π

[
1
2

(
k2

0 − k2
)

Φ(k0, k)Φ(−k0,−k)+

J(k0, k)Φ(−k0,−k) + iε|Φ(k0, k)|2
]}

,
(118)

where the ε has been added term ensure convergence for |Φ| → ∞.

We can now perform the Gaussian integral by using the new
variable

Φ′(k0, k) = Φ(k0, k) + (k2
0 − k2 + iε)J(k0, k)

that allows to rewrite eq. (118) as

Z0[J] = exp

[
− i

2

∫
k

dk0

2π

J(k0, k)J∗(k0, k)
k2

0 − k2 + iε

]
×
∫
DΦ′ exp

{
i
∫

k

dk0

2π

[
1
2

(
k2

0 − k2
)

Φ′(k0, k)Φ∗
′
(k0, k) + iε|Φ|2

]}
.

(119)

The integral over Φ′ gives an uninteresting normalization factor N ,
thus we can write the result of the functional integration as

Z0[J] = N exp

[
− i

2

∫
k

dk0

2π

J(k0, k)J(−k0,−k)
k2

0 − k2 + iε

]
= N exp

[
−1

2

∫
dtd3x GF(t− t′, x− x′)J(t, x)J(t′, x′)

]
,

(120)

The Z0[J] functional is the main ingredient allowing to compute
the effective action describing the dynamics of the sources of the field
we are integrating over and the dynamics of the extra field we are not
integrating over. For instance starting from Stoy defined in eq. (117) we
would obtain the effective action for the sources J from

Se f f [J] = −i log Z0[J] , (121)

where we can safely discard the normalization constant N . For
instance substituting in Stoy Jφ→ J0 + JΦ, with

J0(t, x) + J(t, x)Φ(t, x) = −∑
A

mAδ(t− τa)δ(3)(x− xA)(1 + Φ(t, x)) ,(122)

one would obtain the effective action

Se f f (xA) = ∑
A

[
−mA

∫
dτA+

i
2 ∑

B
mAmB

∫
dτAdτBGF (t(τA)− t(τB), xA(τA)− xB(τB))

]
.

(123)
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Taking for the Green function the quasi static limit

−i
∫

k

dω

2π

e−iω(tA−tB)+ik(xA−xB)

k2 −ω2 + iε

' −i
∫

k

dω

2π

e−iω(tA−tB)+ik(xA−xB)

k2

(
1 +

ω2

k2 + . . .
)

' −iδ(tA − tB)
∫

k

eik(xA−xB)

k2

(
1 +

∂t1 ∂t2

k2

)
= −iδ(t)

[
1

4π|x| +
O(v2)
|x|

]
(124)

one recover the instantaneous 1/r, Newtonian interaction (plus
O(v2) corrections). Note that we have implemented the substitution
ω = −i∂t1 = i∂t2 in order to work out the systematic expansion in v.
This is justified by observing that the wave-number kµ ≡ (k0, k) of the
gravitational modes mediating this interaction have (k0 ∼ v/r, k ∼
1/r), so in order to have manifest power counting it is necessary to
Taylor expand the propagator.

The individual particles can also exchange radiative gravitons (with
k0 ' k ∼ v/r), but such processes give sub-leading contributions to the
effective potential in the PN expansion, and they will be dealt with in
sec. . In other words we are not integrating out the entire gravity field,
but the specific off-shell modes in the kinematic region k0 � k.

Actually there are some more terms we would have obtained,
like the J2

A,BGF(0, 0) which are divergent, as they involve the Green
function computed at 0 separation in space-time. These corresponds
to a source interacting with itself and we can safely discard it, as
such term does not contribute in any way to the 2-body potential.
Its unobservable (infinite) contribution can be re-absorbed by an
(infinite) shift of the value of the mass (any ultraviolet divergence
can be reabsorbed by a local counter term). Of course we cannot trust
our theory at arbitrarily short distance, where this divergence may
be regularized by new physics (quantum gravity?) but as we do not
aim to predict the parameters of the theory, but rather take them as
input to compute other quantities like interaction potential, we keep
intact the predictive power of our approach. From the technical point
of view it is a power-law divergence, which in dimensional regularization
is automatically set to zero.

If there are interaction terms which cannot be written with terms
linear or quadratic in the field, the Gaussian integral cannot be done
analytically, so the rule to follow is to separate the quadratic action
Squad[Φ] of the field (its kinetic term) and Taylor expand all the rest:
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for an action S = Squad + (S− Squad) one would write

Z[J] =
∫
DeiS+i

∫
Jφ

=
∫
DeiSquad+i

∫
Jφ

1 + i
(

S− Squad

)
−

(
S− Squad

)2

2
+ . . .

 ,
(125)

where J is now an auxiliary source, the physical source term will
be Taylor expanded in the S − Squad term. As long as the S − Squad

contains only polynomials of the field which is integrated over, the
integral can be perturbatively performed analytically, inheriting the rule
from eqs. (115,116): roughly speaking fields have to be paired up, each
pair is going to be substitued by a Green function.

Our perturbative expansion admits a nice and powerful representa-
tion in terms of Feynman diagrams. Incoming and outgoing particle
world-lines are represented by horizontal lines, Green functions by
dashed lines connecting points, see e.g. fig. 2 the Feynman diagram
accounting for the Newtonian potential, which is obtained by pairing
the fields connected in the following expression

eiSe f f = Z[J, xA]| =
∫
DeiSquad+i

∫
JΦ × {1

−1
2

[
∑
A

mA

∫
dtAΦ (tA, xA(tA))

] [
∑
B

mB

∫
dtBΦ (tB, xB(tB))

]
+ . . .

}
(126)

Figure 2: Feynman graph accounting for
the Newtonian potential.

If following Green function’s lines all the vertices can be connected
the diagram is said connected, otherwise it is said disconnected: only
connected diagrams contribute to the effective action. We will not
demonstrate this last statement, but its proof relies on the following
argument. Taking the logarithm of eq. (126) we get

Se f f = −i log Z0[J]− i log(
∞

∑
n=1

(−1)n+1

n
Z−1

0 [J] (Z[J]− Z0[J])
n . (127)

All terms with n > 1 describe disconnected diagrams, and some
disconnected diagrams can also be present in the n = 1 term. However
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the n = 1 disconnected contribution is precisely canceled by the n = 2
terms. Beside discarding the disconnected diagrams, we can also
discard diagrams involving Green function at vanishing separation
GF(0, 0), which give an infinite re-normalization to parameters with
dimensions. For instance the diagram in fig. 3, which would arise from
the (Squad − S)4 term in eq. (126), is both disconnected and involve a
GF(0, 0), cancelling the contribution from the product of disconnected
diagrams from (Z[J]− Z0[J])2, where in one factor of Z[J]− Z0[J] one
contracts two φs at equal point, and in the other two φs at different
points.

Figure 3: Diagram giving a power-law
divergent contribution to the mass.

Having exposed the general method, let us apply it to the comu-
tation of the effective action for the conservative dynamics of binary
systems. In order to do that it will be useful to decompose the metric
as

gµν = e2φ/Λ

(
−1 Aj/Λ

Ai/Λ e−cdφ/Λγij − Ai Aj/Λ2

)
, (128)

with γij = δij + σij/Λ, cd = 2 (d−1)
(d−2) (Λ = (32πGN)−1/2 is a constant

with dimensions that will allow a simpler normalization of the Green
functions). In terms of this parametrization, the Einstein-Hilbert plus
gauge fixing action is at quadratic order

Squad =
∫

dt ddx
√

γ

{
1
4

[(
~∇σ
)2
− 2

(
~∇σij

)2
−
(

σ̇2 − 2(σ̇ij)2
)]

−cd

[(
~∇φ
)2
− φ̇2

]
+

[
F2

ij

2
+
(
~∇·~A

)2
− ~̇A2

]}
,

(129)

where the gauge fixing term

SGF =
1

32πGN

∫
dtddx

(
gil Γ̃

i
jkΓ̃l

mngjkgmn
)

(130)

with Γ̃i
jk ≡

1
2 γil

(
γl j,k + γlk,j − γjk,l

)
has been used, and the source
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term is

Sp = −m
∫

dteφ/Λ

√(
1− Aivi

Λ

)
− e−cdφ/Λ

(
v2 + σijvivj

)
' −m

∫
dt
{√

1− v2 + φ

[
1 +

3
2

v2
]

+
φ2

2Λ

[
1 + O(v2)

]
+

+ Aivi

[
1 + O(v2)

]
+

σij

2
vivj

[
1 + O(v2)

]
+ . . .} .

(131)

The Green functions (inverse of the quadratic terms) of the fields are

GF(t, x) = −i
∫

k

dk0

2π

e−ik0t+ikx

k2 − k2
0
×


− 1

2cd
φ

1
2

δij A

−1
2

(
δikδjl + δilδjk −

2
d− 2

δijδkl

)
σ

(132)

Let us consider the computation of the effective action

iSe f f = log
∫
DφDADσeiSquad

{
1 + . . .− 1

2

×
[
−m1

Λ

∫
dt1

(
φ

(
1 +

3
2

v2
1

)
+

φ2

2Λ
+ Aiv1i

)
−m2

Λ

∫
dt2

(
φ

(
1 +

3
2

v2
2

)
+

φ2

2Λ
+ Aiv2i

)
+ . . .

]2

+
i3

6

[
−m1

Λ

∫
dt1 (φ (1 + . . .))− m2

Λ

∫
dt2

(
. . . +

φ2

2Λ
+ . . .

)]3

+ . . .

}
,

(133)

We see that we have to pair up, or contract the term linear in φ of
the second line with the analog term in the third line, to give a
contribution to the effective action

iSe f f | f ig. 2−φ ⊃ −i3
m1m2

8Λ2

∫
dt1 dt2δ(t1 − t2)

∫
k

eik(x1(t1)−x2(t2))

k2

[
1 +

3
2

(
v2

1 + v2
2

)](
1 +

∂t1 ∂t2

k2

)
= i

m1m2

8Λ2

∫
dt
∫

k

eik(x1(t)−x2(t))

k2

[
1 +

3
2

(
v2

1 + v2
2

)](
1 +

vi
1vj

2kik j

k2

)
' i

GNm1m2

r

[
1 +

3
2

(
v2

1 + v2
2

)
+

1
2

(v1v2 − (v1r̂)(v2r̂))
] (134)

where the propagator has been Taylor expanded around k0/k ∼ 0 as in
eq. (124) and the formulae∫

k
eikx 1

k2α
=

Γ(d/2− α)
(4π)d/2Γ(α)

( r
2

)2α−d
(135)

∫
k

eikx kikj

k2α
=

(
1
2

δij −
(

d
2
− α + 1

)
r̂i r̂j
)

Γ(d/2− α + 1)
(4π)d/2Γ(α)

( r
2

)2α−d−2
(136)

have been used. Considering the contraction of two A fields one gets

iSe f f | f ig. 2−Ai
⊃ i3

m1m2

2Λ2

∫
dt
∫

k

eik(x1−x2)

k2 δijvi
1vj

2

= −i
4GNm1m2

r
v1v2

(137)
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This is still not the whole story for the v2 corrections to the Newtonian
potential, as we still have to contract two φ’s from the fourth line of
eq. (133) with a φ2 of the same line, getting the contribution

iSe f f | f ig. 4 ⊃ i5
m2

1m2

128Λ4

∫
dt

(∫
k

eik(x1−x2)

k2

)2

= i
G2

Nm2
1m2

2r2

(138)

Summing the contributions from eqs.(134,137,138), plus the 1↔ 2 of
eq. (138), one obtains the Einstein-Infeld-Hoffman potential (remember
that the potential enters the Lagrangian with a minus sign!)

VEIH = −GNm1m2

2r

[
3
(

v2
1 + v2

2

)
− 7v1v2 − (v1r̂)(v2r̂)

]
+

G2
Nm1m2(m1 + m2)

2r2 .(139)

Figure 4: Graph giving a G2
N con-

tribution to the 1PN potential via φ
propagators.

Power counting

We have nevertheless neglected a contribution from the pairing of the
two φ2 terms appearing at (Squad − S)2 order expansion in eq. (133),
which gives rise to a term proportional to GNm1m2G2

F(x1 − x2). We
have rightfully discarded it as it represents a quantum contribution to
the potential, and in the phenomenological situation we are consid-
ering to apply this theory, quantum corrections are suppressed with
respect to classical terms by terms of the order h̄/L, where L is the
typical angular momentum of the systems, whic in our case is

L ∼ mvr ∼ 1077h̄
(

m
M�

)2 ( v
0.1

)−1
. (140)

Intermediate massive object lines, (like the ones in fig. 4) have no
propagator associated, as they represent a static source (or sink) of
gravitational modes. At the graviton-massive object vertex momentum
is not conserved, as the graviton momentum is ultra-soft compared to
the massive source.

The h̄ counting of the diagrams can be obtained by restoring the
proper normalization in the functional action definition eq. (125),
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implying that in the expansion we have [(S − Squad)/h̄]n and that
each Green function, being the inverse of the quadratic operator
acting on the fields, brings a h̄−1 factor. Note that we consider that
the classical sources do not recoil when interacting with via “field
pairing”. This is indeed consistent with neglecting quantum effects, as
the wavenumber k of the exchanged gravitational mode has k ∼ 1/r
and thus momentum h̄/r.

By inspecting Feynman diagrams we can systematically infer the
scaling of their numerical result accordinf to the following rule:

• associate to each n-graviton-particle vertex a factor m/Λndt(ddk)n ∼
dtm/Λnr−dn, and analogously for multiple graviton vertices

• each propagator scales as δ(t)δd(k)/k2 ∼ δ(t)r−2+d

• each n-graviton internal vertex scale as (k2, k0k, k2
0)dtδd(k)(ddk)n ∼

dt(1, v, v2)r−d(n−1)

Figure 5: Vertex scaling:
m
Λ

dtddk ∼

dt
m
Λ

r−d

Figure 6: A Green function is repre-
sented by a propagator, with scaling:
δ(t)δd(k)/k2 ∼ δ(t)r2+d

Figure 7: Triple internal vertex scaling:
(k2, kk0, k2

0)
Λ

δd(k)dt(ddk)3 ∼ dt
(1, v, v2)
r2+2dΛ

Putting together the previous rule one find for instance that the
diagram in fig. 9 scale as dtm (times the appropriate powers of v from
the expansion of the vertex and of the propagator)
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Figure 8: Quantum contribution to the
2-body potential.

Note that instead of computing the efective potential we can also
compute the effective energy momentum tensor of an isolated source
by considering the the effective action with one external gravitational
mode Hµν(t, x) not to be integrated over:

iSe f f−1g(m, Hµν) = log
∫
DφDADσeiSEH+GF(hµν+Hµν)

×
(

1−m
∫

dτ(hµν + Hµν) + . . .
)
|H1

µν

=
i
2

∫
dtd3xT(e f f )

µν Hµν ,

(141)

where the computation is made as usual by performing a Gaussian
integration on all gravity field variables and the result will be linear
in the external field which instead of being integrated over, is the
Hµν is the one we want to find what it is coupled to. By Lorentz
invariance Hµν must be coupled to a symmetric 2-tensor by which by
definition is the energy momentum tensor. Alternatively one can take
eq. (126) in the presence of physical sources J ∼ −m

∫
dτ and compute

perturbatively the Feynman integral to obtain

〈Hµν〉 =
∫
DφDADσHµνeiS(h+H) . (142)

For instance at lowest order it will give

〈Hµν(t, x)〉 =
∫
DφDADσHµνeiSquad−im

∫
dt φ

Λ +H00 ...

' −i
m
Λ2

∫
dt′d3yGF(t− t′, x− y)δ(3)(y− x1) .

(143)

By stripping this result by the Green function will give the energy
momentum tensor which is coupled to the gravity field, as the solution
of Performing this computation at higher perturbative orders will give
the higher order corrections to the Newtonian potential.

Exercise 12 *** Geodesic Equation

Derive the geodesic equation from the world line action (104).
Exercise 13 *** Gauge fixed quadratic action

Derive eq. (110) from eq. (105) and the gauge fixing term (109).
Exercise 14 *** Schwarzschild solution at Newtonian or-

der
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Starting from action (110) derive the eq. (15) (or one can start with
(105 and dropping all terms which quadratically vanish on for the
Lorentz gauge condition). Expand (104) so to obtain

Sm−static = −m
∫

dt′
(
−1 +

h00(t′, xp)
2

)
and then derive

T(static)
µν (t, x) = 2

δSstatic
δgµν(t, x)

= −mδ(3)(x− xp)δµ0δν0

Use eq. (112) to obtain from the variation of the action eq. (15) and
plug in the specific form of the retarded Green function to obtain

h̄µν = (−32πGN)
(
− 1

4π

)
δµ0δν0

2

∫
dt′dx′

δ (t− t′ − |x− x′|)
|x− x′| δ(3)(x′ − xp)

=
4GNm

r
δµ0δν0 .

Using that

hµν = h̄µν −
1
2

h̄µν

and that on the above solution

h̄ = −4
GNm

r
,

find the final result

h00 = h̄00 +
1
2

h̄ = 2
GNm

r
hxx = h̄xx −

1
2

h̄ = 2
GNm

r
.

Exercise 15 * Gaussian integrals

Derive eq. (113) from

∫
e−

1
2 ax2

dx =
(

2π

a

)1/2
.

Derive the above from[∫
dxe−

1
2 ax2

]2
= 2π

∫
ρe−

1
2 aρ2

dρ .

Exercise 16 ****** φ3 vertex contribution to the 2PN poten-
tial

Compute the contribution of fig. 9 to Se f f . The φ3 term in the Einstein-
Hilbert Lagrangian is −cdφφ̇2/Λ, see 24. Hint: this diagram is orig- 24 Stefano Foffa and Riccardo Sturani.

Effective field theory calculation of
conservative binary dynamics at third
post-Newtonian order. Phys.Rev., D84:
044031, 2011

inated from the (S − Squad)4 term which is understood in (133).

Exercise 17 ** Power h̄
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Figure 9: Sub-leading correction to the 2

particle scattering process due to gravity
self-interaction. The φ3 vertex brings two
time derivative, making this diagram
contribute from 2PN order on.

Derive the h̄ scaling of graphs: h̄I−V , where I stands for the number
of internal lines (propagators) and V for the numer of vertices. All
classical diagrams are homogeneous in h̄−1

Exercise 18 **** Quantum correction to classical potential

Derive the quantum correction to the classical potential given by
the term proportional to GNm1m2G2

F(x1 − x2) originated from the
expansion of Squad − S at linear order.

Exercise 19 ***** Newtonian potential as graviton ex-
change

In non-relativistic quantum mechanics a one-particle state with
momentum h̄p in the coordinate representation is given by a plane
wave

ψp(x) = C exp (ipx) ,

where the normalization constant C can be found by imposing∫
V
|ψp|2 = 1 =⇒ C =

1√
V

.

Since we want to trace the powers of M and h̄ in the amplitude, it is
necessary to avoid ambiguities: variables pi are wave-numbers and ω

is a frequency, so that h̄ω is an energy and h̄p is a momentum.
We define the non-relativistic scalar product

〈p1|p2〉NR =
∫

d3x ψ∗p1
(x)ψp2(x) = δp1,p2

which differs from the relativistic normalization used in quantum field
theory for the scalar product 〈p1|p2〉R according to:

〈p1|p2〉R =
2ωp1

h̄
V〈p1|p2〉NR ,

which implies

|p〉NR =
(

h̄
2ωpV

)1/2
|p〉R .
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Note that a scalar field in the relativistic normalization has the relativis-
tic expansion in terms of creator and annihilator operators

ψ(t, x) =
∫

k

1√
ωk

[
ake−iωkt+ikx + a†

keiωkt−ikx
]

(144)

with
[ak, ak′ ] = ih̄(2π)3δ(3)(k− k′) .

We want to study the relativistic analog of the process described in
fig. 2, assuming the coupling of gravity with a scalar particle given by
the second quantized action

Spp−quant =
1
2

∫
dtd3x

{
∂µψ∂νψ− 1

2
ηµν

[
(∂αψ∂αψ) +

M2

h̄2

]}
hµν

Λ
,

where the Λ factor has been introduced to have a canonically normal-
ized gravity field.

Derive the quantum amplitude A(p1, p2, p1 + k, p2 − k) for the
1-graviton exchange between two particles with incoming momenta
p1,2 and outgoing momenta p1,2 ± k

iA(p1, p2, p1 + k, p2 − k) = Aαβµν
ih̄

k2 − k0

× i2

h̄2Λ2
〈p1 + k|Tµν|p1〉NR〈p2 − k|Tαβ|p2〉NR

where Aαβµν is defined in eq.(111).
Hint: from Sp−quant above derive

T00 = 1
2

[
ψ̇2 + (∂iψ)2 + M2

h̄2 ψ2
]

,

T0i = ∂0ψ∂iψ ,

Tij = ∂iψ∂jψ− 1
2 δij

[
−ψ̇2 + ∂iψ∂iψ + M2

h̄2 ψ2
]

,

show that in the non-relativistic limit the term the A0000 term domi-
nates and use the above equation to express |q〉R in terms of |q〉NR.
Use also that in the NR limit pµ = δµ0ωp = δµ0M/h̄.

Exercise 20 ******** Classical corrections to the Newto-
nian potential in a quantum set-up

Consider the process in fig. 9, write down its amplitude

iA f ig.9 =
∫

dt
(

i
h̄

)3
〈p1 + k|T00|p1〉NR〈p2 + q|T00|p2〉NR〈p2 − k|T00|p2〉NR

×
∫

k,q

dω2

2π
eik(x1−x2) ih̄

k2
ih̄

(k + q)2
ih̄
q2

ih̄
(p2 + q)2 + M2/h̄2 −ω2

2 − iε
.

After writing the massive propagator as

1√
(p2 + q)2 + M2/h̄2 + ω2

1√
(p2 + q)2 + M2/h̄2 −ω2)

∼ h̄/M√
(p2 + q)2 + M2/h̄2 −ω2



42

Perform the integral first in ω2 and take the limit h̄ → 0 and M → ∞
to recover the result in the non-relativistic classical theory.

Exercise 21 **** Correction to Newtonian equation of
motions

Derive the Newtonian-like e.o.m. from the effective action

S1PN =
∫

dt
1
4

(
m1v4

1 + m2v4
2

)
−VEIH .

Verify that a result of the type

ai
1 = −ω2(r, v)(xi

1 − xi
2) + A(r, v)(vi

1 − vi
2)

is obtained, for appropriate functions ω and A. Take the circular orbit
limit (r · v1,2 = 0) and substitute x ≡ (GN Mω)2/3, with M ≡ m1 + m2,
to express r in terms of x. Once obtained the formula

GN M
r

= x
[
1 +

(
1− η

3

)
x
]

,

where η ≡ m1m2
M2 , find the analog for v ≡ ωr, which is

v2 = x
[
1 + 2

(η

3
− 1
)]

.

Exercise 22 ******* Lorentz invariance in the non-relativistic
limit

Derive the non-relativistic limit of the Lorentz transformation(
t′

x′

)
= (1− w2)−1/2

(
1 −w
−w 1

)(
t
x

)
Result:

xa → x′a = x−wt + va(w · xa)
t → t′ = t

where w is the boost velocity and wa = ẋa. From the Lagrangian
L(xa, va), let us define

δL
δxi

a
≡ − d

dt

(
∂L
∂vi

a

)
+

∂L
∂xa

.

and on the equations of motion δL/δxi
a = 0. Show that for any

transformation δxi
a = xi′

a − xi
a one can write the Lagrangian variation

as
δL =

dQ
dt

+ ∑
a

δL
δxi

a
δxi

a + O(δx2
a) ,

with
Q ≡∑

a

∂L
∂vi

a
δxi

a = ∑
a

pi
aδxi

a .

If the transformation δxi
a is a symmetry, the Lagrangian transforms as

a total derivative, that is, in the case of boosts, δL = widZi/dt + O(w2)
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for some function Zi. Apply the above equation for δL in terms of
Q to derive that invariance under boosts implies conservation of the
quantity

Gi −∑
a

pi
at ≡ −Zi + ∑

a
xi

a(pa · va)−∑
a

pi
at

and find the specific form of Zi at Newtonian level and at 1PN level.
Interpret Gi as the center of mass position, by imposing Gi = 0
and x1 − x2 = r find the expressions of xi

1,2 in terms of the relative
coordinate ri.

Find the energy E of the system

E = ∑
a

vi
a pi

a − L .

at Newtonian and 1PN level. Use the result of the previous step to
express va in terms of the relative velocity v. Use the result of the
previous exercise to find the energy of the circular orbit in terms of x
and compare with the Schwarzschild result of ex. 8

Exercise 23 ***** Graviton loop

Diagrams like the one in fig. 8 do not affect the classical potential.
How many powers of h̄ does this diagram contains? Estimate quantita-
tively its contribution to the effective action. Is it correct to expand the
GF in its quasi-static limit (ω2 � k2)?

Exercise 24 ***** Field solution

Derive the expression of the potential of an isolated source at 1PN.
Hint: you need to perform the path integral by setting an extra field in
the integrand:

〈hµν〉 =
∫
Dhµν hµνeiSe f f (J,hµν) (145)

which by virtue of eq. (115), is equivalent to taking a derivative
with respect to the J source. Substitute the source-field coupling
JΦ in eq. (118) with Jφφ + JA A + Jσσ given by −ma

∫
dtd3xδ(x −

Xa)
[
(1 + 3

2 v2
a)φ + Aivai + σijvajvai

]
. Find the solution to the equation

of motion of φ, A and σij at Newtonian order by using

(
φ, A, σij

)
=

δZ0[J]
δ
(

Jφ, JA, Jσ

) .

Use the presence of the term cd/2∂iφ∂jφ(δikδjl + δilδjk − δijδkl)σkl in
the Einstein-Hilbert action to derive GNm/r correction to the above
solution.

Exercise 25 ****** 2PN potential of an isolated source

Similarly to the previous exercise, derive the 2PN potential of a static,
isolated source. Note that in this case one can neglect the A and σ

coupling in the world-line action, but not in the Einstein-Hilbert action.
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Hint: According to the ansatz in eq. (128) φ couples to T00 + Tkk, σij

to Tij and Ai to T0i. Use the “bulk” 3-linear interaction, which can be
deduced from the Einstein-Hilbert + gauge fixing:

SEH−h3 ⊃
∫

dtddx
φ

Λ

[
−4φ̇2 + 4Ȧ2

i + Ai,j Ai,j

+σ̇ijσ̇kl

(
δijδkl − δikδjl − δilδjk

)]
− 8φ̇φk Ak

Result: one should derive the Schwarzschild metric in harmonic gauge

dτ2 =
r− GN M
r + GN M

dt2 +
(r + GN M)2

r2

[
δij −

xixj

r2

]
dxidxj +

r + GN M
r− GN M

xixj

r2 dxidxj .

Exercise 26 ****** 2PN correction to the Energy momen-
tum tensor of an isolated point particle

We now want to derive an expression for the “dressing” of the energy-
momentum tensor because of the gravitational interacion. In quantum
mechanics this correspond to evaluate the 1-point function of Tµν, that
is 〈Tµν〉. In order to compute this it is useful to use the “background
field method”, consisting in substituting in the integrand of the
Feyman integral

hµν → hµν + Hµν ,

perform the Gaussian integration and then keep only the terms linear
in Hµν, which by definition describe the energy momentum tensor.
Explain why this computation is the same as the one of the previous
exercise, it just needs the use of 1 Green function less.



GW Radiation

In the previous chapters we have shown how to obtain an effective
action describing the dynamics of a binary system at the orbital scale
r in which gravitational degrees of freedom have been integrated out,
resulting in a series expansion in v2, as in a conservative system odd
powers of v are forbidden by invariance under time reversal.

The gravitational tensor in 3+1 dimensions has 6 physical degrees
of freedom (10 independent entries of the symmetric rank 2 tensor
in 3+1 dimensions minus 4 gauge choices): 4 of them are actually
constrained, non radiative physical degrees of freedom, responsible for
the gravitational potential, and the remaining 2 are radiative, or GWs.

In order to compute interesting observables, like the average energy
flux emitted by or the radiation reaction on the binary system, we
have to consider processes involving the emission of GW, i.e. on-shell
gravitational modes escaping to infinity.

In order then to obtain an effective action for the sources alone,
including the back-reaction for the emissioin of GWs, it will be
useful to “integrate out” also the radiative degrees of freedom, with
characteristic length scale λ = r/v, as it will be shown in the next
sections. s We aim now at writing the coupling of an extended source
in terms of the energy momentum tensor Tµν(t, x) moments, i.e. we
want to introduce the multipole expansion. Here we use Tµν, as in 25, to 25 W. D. Goldberger and A. Ross.

Gravitational radiative corrections from
effective field theory. Phys. Rev. D, 81:
124015, 2010

denote the term relating the effective action S1g relative to the single
graviton emission

S1g ∝
∫

dtddx Tµν(t, x)hµν(t, x) , (146)

to the gravitational mode generically denoted by hµν. With this
definition Tµν receives contribution from both matter and the gravity
pseudo-tensor appearing in the traditional GR description of the
emisson processes.

Given that the variation scale of the energy momentum tensor
and of the radiation field are respectively rsource and λ, by Taylor-
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expanding the standard term Tµνhµν

∑
n

1
n!

∂1 . . . ∂nhµν(t, x)

∣∣∣∣∣
x=0

∫
ddx′ Tµν(t, x′)x′1 . . . x′n , (147)

we obtain a series in rsource/λ, which for binary systems gives rsource =
r � λ = r/v.

The results of the integral in eq. (147) are source moments that, fol-
lowing standard procedures not exclusive of the effective field theory
approach described here, are traded for mass and velocity multipoles.
For instance, the integrated moment of the energy momentum tensor
can be traded for the mass quadrupole

Qij(t) ≡
∫

ddx T00(t, x)xixj , (148)

by repeatedly using the equations of motion under the form T ,ν
µν = 0:∫

ddx
[
T0ixj + T0jxi

]
=

∫
ddx T0k

(
xixj

)
,k

= −
∫

ddx T0k,k xixj

=
∫

ddx Ṫ00 xixj = Q̇ij

(149)

2
∫

ddx Tij =
∫

ddx
[

Tik xj,k + Tkj xi,k

]
=

∫
ddx

[
Ṫ0ixj + Ṫ0jxi

]
=

∫
ddx T̈00xixj = Q̈ij .

(150)

The above equations also show that as for a composite binary system
T00 ∼ O(v0), then T0i ∼ O(v1) and Tij ∼ O(v2).

Taking as the source of GWs the composite binary system, the
multipole series is an expansion in terms of r/λ = v, so when
expressing the multipoles in terms of the parameter of the individual
binary constituents, powers of v have to be tracked in order to arrange
a consistent expansion. At lowest order in the multipole expansion
and at v0 order

Sext|v0 =
1
Λ

∫
dt ddx T00|v0 φ =

M
Λ

∫
dt φ , (151)

where in the last passage the explicit expression

T00(t, x)|v0 = ∑
A

mAδ(3)(x− xA(t)) , (152)

has been inserted. At order v the contribution from the first order
derivative in φ have to be added the contribution of Tµν|v, which gives

Sext|v =
1
Λ

∫
dt ddx (T00|v0 xiφ,i + T0i|v Ai) , (153)
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with

T0i(t, x)|v = ∑ mAvAiδ
(3)(x− xA(t)) , (154)

and neither T00 nor Tij contain terms linear in v. Since the total mass
appearing in eq. (151) is conserved (at this order) and given that
in the center of mass frame ∑A mAxAi = 0 = ∑A mAvAi, there is
no radiation up to order v. From order v2 on, following a standard
procedure, see e.g. 26, it is useful to decompose the source coupling 26 M. Maggiore. Gravitational Waves.

Oxford University Press, 2008to the gravitational fields in irreducible representations of the SO(3)
rotation group, to obtain

Sext|1v2 = − 1
4Λ

∫
dt ddx T0i|v xj(Ai,j − Aj,i) ,

Sext|0+2
v2 =

1
4Λ

∫
dt Qij|v0

(
σ̈ij − 2φ,ij −

2
d− 2

φ̈ δij − Ȧi,j − Ȧj,i

)
,

(155)

were eqs. (149,150) and integration by parts have been used, 0, 1, 2
stand for the scalar, vector and symmetric-traceless representations of
SO(3), and

Qij
∣∣
vn =

∫
ddx T00|vn xixj . (156)

The 1 part matches the second term in eq. (157), and it is not responsi-
ble for radiation as it couples Ai to the conserved angular momentum.
Let us pause for a moment to overlook our procedure and identify the
0 and 2 terms. We want to describe a composite system, the coalescing
binary made of two compact objects. At the scale of GW radiation
λ = r/v� r the binary system can be seen as a single object character-
ized by its coupling to the background gravitational fields. The point
action (104) describe point particles, but extended objects experiences
tidal field due to their non-zero size. It is possible to parametrize
such effects by effective terms that take into account finite size in a
completely general way, via the expression

Sext ⊃
∫

dτ

(
−M− 1

2
Sabωab

µ uµ +
cQ

2
IijEij +

cJ

2
JijBij +

cO
2

Iijk∂iEjk + . . .
)

,(157)

where ωab
µ is the spin connection coupling to the total angular momen-

tum, while the electric (magnetic) tensor Eij (Bij) is defined by

Eij = Cµiνjuµuν ,

Bij = −1
2

εiµνρ uρCµν
jσ uσ ,

(158)

decomposing the Weyl tensor Cµανβ analogously to the electric and
magnetic decomposition of the standard electromagnetic tensor Fµν.
The 0 + 2 term in eq. (155) reproduces at linear order the coupling
QijR0

i0j term in eq. (157), allowing to indetify Iij with Qij at linear
order and to impose cQ = 1.
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This amounts to decompose the source motion in terms of the
world-line of its center of mass and moments describing its internal
dynamics. The Iij, Iijk, Jij tensors are the lowest order in an infinite
series of source moments, the 2nth electric (magnetic) moment in
the above action scale at leading order as mrn

source (mvrn
source), and

they couple to the Taylor expanded Eij (Bij) which scales as L−(1+n),
showing that the above multipole expansion is an expansion in terms
of rsource/L. Note that the world-line of the composite object cannot
couple to R and Rµν, as by the Einstein equation they vanish where
sources are not present, thus such couplings can be neglected if we
are interested in describing how a composite obect respond to the
gravity field of other objects. 27. As linear terms in the Ricci tensor 27 Equivalently, it can be shown that the

field redefinition gµν → gµν + δgµν with

δgµν =
∫

dτ
δ(xα − xα(τ))√−g

[(
−cR +

cV

2

)
gµν − cV uνuν

]
can be used to set to zero the above
terms linear in the curvature, see for
details.

W. D. Goldberger. Les houches
lectures on effective field theories and
gravitational radiation. In Les Houches
Summer School - Session 86: Particle
Physics and Cosmology: The Fabric of
Spacetime, 2007

and Ricci scalar cannot appear, the terms involving the least number
of derivatives are the ones written above in eq. (157), in terms of the
(traceless part of the) Riemann tensor. Out of the Riemann tensor,
we select only its trace-free part (10 components out of 20 in 3 + 1
dimensions, which are then re-arranged in the 5 components of the
electric Weyl tensor Eij and 5 components in the magnetic Weyl tensor
Bij).

Note that the multipoles, beside being intrinsic, can also be induced
by the tidal gravitational field or by the intrinsic angular momentum
(spin) of the source. For quadrupole moments the tidal induced
quadrupole moments Iij, Jij|tidal ∝ Eij, Bij give rise to the following
terms in the effective action

Stidal =
∫

dτ
[
cEEijEij + cBBijBij

]
. (159)

This is also in full analogy with electromagnetism, where for instance
particles with no permanent electric dipole experience a quadratic
coupling to an external electric field. Eq. (159) can be used to describe
a single, spin-less compact object in the field of its binary system com-
panion. Considering that the Riemann tensor generated at a distance r
by a source of mass m goes as m/r3, the finite size effect given by the
EijEij term goes as cEm2/r6. For dimensional reasons cE ∼ GNr5

source
28, thus showing that the finite size effects of a spherical symmetric 28 Walter D. Goldberger and Ira Z.

Rothstein. An Effective field theory of
gravity for extended objects. Phys.Rev.,
D73:104029, 2006

body in the binary potential are O(Gm/r)5 times the Newtonian
potential, a well known result which goes under the name of effacement
principle 29 (the coefficient cE actually vanishes for black holes in 3 + 1 29 T. Damour. Gravitational radiation and

the motion of compact bodies, pages 59–144.
North-Holland, Amsterdam, 1983b

dimensions 30).
30 T. Damour. Gravitational radiation
and the motion of compact bodies.
In N. Deruelle and T. Piran, editors,
Gravitational Radiation, pages 59–144.
North-Holland, Amsterdam, 1983a; and
Barak Kol and Michael Smolkin. Black
hole stereotyping: Induced gravito-static
polarization. JHEP, 1202:010, 2012. doi:
10.1007/JHEP02(2012)010

In order to simplify the calculation, we work from now on in the
transverse-traceless (TT) gauge, in which the only relevant radiation
field is the traceless and transverse part of σij. The presence of the
other gravity polarizations is required by gauge invariance.

Discarding all fields but the TT-part of the σij field, at order v3 one
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has

Sext|v3 =
1
2

∫
dt ddx Tij|v2 xk σij,k (160)

and using the decomposition see ex. 28∫
ddx Tijxk =

1
6

∫
ddx T̈00xixjxk

+
1
3

∫
ddx

(
Ṫ0ixjxk + Ṫ0jxixk − 2Ṫ0kxixj

)
,

(161)

we can re-write, see ex.29,

Sext|v3 =
∫

dt
(

1
6

QijkEij,k −
2
3

PijBij

)
(162)

where

Qijk =
∫

ddx T00 xixjxk , (163)

and

Pij =
∫

ddx
(

εiklT0kxl xj + εjklT0kxl xi

)
, (164)

allowing to identify Jij ↔ Pij and Iijk ↔ Qijk at leading order, with
cJ = −4/3 and cO = 1/3. In order to derive eq. (164) see ex. 29. Note
that from now on it is understood that the GW field is the TT one, so it
couple only to the trace-free part of the source

At v4 order the Tijxkxlσij,kl term, beside giving the leading hexade-
capole term (or 24th-pole) and v corrections to the leading magnetic
quadrupole and electric octupole, also gives a v2 correction to the
leading quadrupole interaction IijEij, which can be written as (we give
no demonstration here, see sec. 3.5 of 31 for the general method) 31 M. Maggiore. Gravitational Waves.

Oxford University Press, 2008

Sext|v4 ⊃
∫

dtd3x
[

T00|v2 + Tkk|v2 −
4
3

Ṫ0k|v xk +
11
42

T̈00|v0 x2
]

×
(

xixj −
δij

d
x2
)

Eij .
(165)

For the systematics at higher orders we refer to the standard textbook
32. 32 M. Maggiore. Gravitational Waves.

Oxford University Press, 2008

Matching between the radiation and the orbital scale

In the previous subsection we have spelled out the general expression
of the effective multipole moments in terms of the energy-momentum
tensor moments. However we have only used two ingredients from the
specific binary problem

• T00 ∼ mv0
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• the source size is r and the length variation of the background is
λ ∼ r/v .

Now we are going to match the coefficients appearing in eq. (157) with
the parameters of the specific theory at the orbital scale.

At leading order Qij|v0 = ∑A mAxAixAj = µrirj and the v2 correc-
tions to T00 can be read from diagrams in figs. 10,11. As φ couples to
T00 + Tkk and σij to Tij, from the diagrams one obtains33 33 Note that since only

∫
Tkk is needed,

and not Tkk itself, it could have been
computed from eq. (150) instead of from
the diagram in fig. 11.

∫
d3x (T00 + Tkk)

∣∣∣∣
v2

= ∑
A

3
2

mAv2
A − ∑

B 6=A

GNmAmB
r

,∫
d3xTkk|v2 = ∑

A

1
2

mAv2
A −

1
2 ∑

B 6=A

GNmAmB
r

.
(166)

Figure 10: Graph dressing T00 at v2

order.

Figure 11: Graph dressing Tij at leading
order. The external radiation graviton
does not carry momentum but it is
Taylor expanded according to eq. (147).

These diagrams are obtained by performing the Gaussian path
integral with an external gravitational mode Hµν on which one
does not have to integrate over. This correspond to adopting the
“background-field method”, in which every graviton in the original
Lagrangian is splitted according to hµν → hµν + Hµν and then
integration is performed on hµν alone. The temr linear in Hµν in
the resulting effective action is by definition (proportional to) the
energy-momentum tensor.

Integrating out the radiating graviton and mass renormalization

We have now built an effective theory for extended objects in terms of
the source moments and we also shown how to match the orbital scale
with the theory describing two point particles experiencing mutual
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Figure 12: Diagram giving the leading
term of the amplitude describing
radiation back-reaction on the sources.

Figure 13: Next-to-leading order term in
the back-reaction amplitude.

gravitational attraction. We can further use the extended object action
in eq. (157) to integrate out the gravitational radiation to obtain an
effective action Smult for the source multipoles alone.

In order to perform such computation, boundary conditions
asymmetric in time have to be imposed, as no incoming radiation at past
infinity is required. Using the standard Feynman propagator, which
ensures a pure in-(out-)going wave at past (future) infinity, would
lead to a non-causal evolution as it can be shown by looking at the
following toy model 34, which is defined by a scalar field Ψ coupled to 34 M. Tiglio C. R. Galley. Radiation

reaction and gravitational waves in the
effective field theory approach. Phys.
Rev., D79:124027, 2009

a source J:

Stoy =
∫

dd+1x
[
−1

2
(∂ψ)2 + ψJ

]
. (167)

We may recover the field generated by the source J as

ψ(t, x) =
∫

dd+1x GF(t− t′, x− x′)J(t′, x′) . (168)

In a causal theory ψ would be given by the same eq. (168) but with the
Feynman propagator replaced by the retarded one GRet(t, x), however
it is not possible to naively use the retarded propagator in the action
(167), as it would still yield non-causal equations of motions as∫

dtd3xdt′d3x′ψ(t, x)G−1
ret (t− t′, x− x′)ψ(t′, x′)

=
1
2

∫
dtd3xdt′d3x′ψ(t, x)

(
G−1

ret (t− t′, x− x′) + G−1
adv(t− t′, x− x′)

)
ψ(t′, x′)

(169)

This problem was not present in the conservative dynamics described
in sec. as there we had a closed system with no leak of energy: there
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we actually had the Feynman Green function which is symmetric in its
arguments, see ex. 5.

However there is a consistent way to define an action for non-
conservative system with asymmetric time boundary condition: by
adopting a generalization of the Hamilton’s variational principle
similar to the closed-time-path, or in-in formalism (first proposed in 35, 35 J. S. Schwinger. Brownian motion of

a quantum oscillator. J. Math. Phys., 2:
407–432, 1961

see 36 for a review) as described in 37, which requires a doubling of the
36 B. DeWitt. Effectice action for
expectation values. In R. Penrose and
C. J. Isham, editors, Quantum concepts in
Space and Time. Clarendon Press, Oxford,
1986

37 C. R. Galley. The classical mechanics
of non-conservative systems. Phys. Rev.
Lett., 110:174301, 2013

field variables. For instance the toy model in eq. (167) is modified so
that the generating functional for connected correlation functions in
the in-in formalism has the path integral representation

eiSe f f [J1,J2] =
∫
Dψ1Dψ2

× exp
{

i
∫

d3+1x
[
−1

2
(∂ψ1)2 +

1
2
(∂ψ2)2 − J1ψ2 + J1ψ2

]}
.

(170)

In this toy example the path integral can be performed exactly, and
using the Keldysh representation 38 defined by Ψ− ≡ Ψ1 − Ψ2, 38 L. V. Keldysh. Diagram technique for

nonequilibrium processes. Zh. Eksp. Teor.
Fiz., 47:1515–1527, 1964

Ψ+ ≡ (Ψ1 + Ψ2)/2, one can write

Se f f [J+, J−] =
i
2

∫
dd+1x dd+1y JB(x)GBC(x− y)JC(y) , (171)

where the B, C indices take values {+,−} and

GBC(t, x) =

(
0 Gadv(t, x)

Gret(t, x) 0

)
. (172)

In our case, the lowest order expression of the quadrupole in terms of
the binary constituents world-lines xA, i.e.

Qij|v0 =
2

∑
A=1

mA

(
xAixAj −

δij

d
xAkxAk

)
, (173)

is doubled to

Q−ij|v0 =
2

∑
A=1

mA

[
x−Aix+Aj + x+Aix−Aj −

2
d

δijx+Akx−Ak

]
Q+ij|v0 =

2

∑
A=1

mA

[
x+Aix+Aj −

1
d

δijx2
+A + O(x2

−)
]

.
(174)

The word-line equations of motion that properly include radiation
reaction effects are given by

0 =
δSe f f [x1±, x2±]

δxA−

∣∣∣∣∣ xA−=0
xA+=xA

. (175)

At lowest order, by integrating out the radiation graviton, i.e. by
computing the diagram in fig. 12, one obtains the Burke-Thorne 39 39 W. L. Burke and K. S. Thorne. In

S. I. Fickler M. Carmeli and L. Witten,
editors, Relativity, pages 209–228.
Plenum, New York, 1970
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potential term in the effective action Smult

iSmult| f ig. 12 = i2
∫

dt dt′ Q−ij(t)Q+kl(t′)E+ij(t)E−kl(t′)

=
−i3

Λ2

∫
dt dt′ Q−ij(t)Q+kl(t′)

∫
k

dω

2π

eiω(t−t′)

k2 − (ω + iε)2

×
[

ω4

8

(
δikδjl + δilδjk − 2δijδkl

)
+

ω2

8

(
kikkδjl + kiklδjk + k jkkδil + k jklδik

)
−1

8

(
ω4δijδkl + ω2δijkkkl + ω2kik jδkl + kik jkkkl

)]
(176)

After performing the angular integration

∫
dΩ kik j =

4
3

πk2δij ,∫
dΩ kik jkkkl =

4
15

πk4
(

δijδkl + δikδjl + δilδjk

) (177)

and using

∫ ∞

0
dk

ka

k2 − (ω + iε)2 =
π

cos
(
a π

2
) [ 1

− (ω + iε)2

] 1−a
2

, (178)

one finds the result

iSmult| f ig. 12 = i
GN
5

∫ ∞

−∞

dω

2π
ω5Q−ij(ω)Q+ij(ω) (179)

=
GN
5

∫
dtQ−ij(t)

d6Q+ij(t)
dt

(180)

and using eq. (175) the equation of motion follows:

ẍi| f ig. 12 = −2
5

Q(5)
ij xj (181)

Corrections to the leading effect appears when considering as in the
previous subsection higher orders in the multipole expansion: the 1PN
correction to the Burke Thorne potential were originally computed in
40 and re-derived with effective field theory methods in 41. 40 B. R. Iyer and C. M. Will. Postnewto-

nian gravitational radiation reaction for
two-body systems. Phys. Rev. Lett., 70:
113, 1993

41 C. R. Galley and A. K. Leibovich.
Radiation reaction at 3.5 post-newtonian
order in effective field theory. Phys. Rev.
D, 86:044029, 2012

The genuinely non-linear effect, computed originally in 42 and

42 Luc Blanchet and Thibault Damour.
Tail transposrted temporal correlations
in the dynamics of a gravitating sys-
tem. Phys.Rev., D37:1410, 1988; and
L. Blanchet. Time asymmetric structure
of gravitational radiation. Phys.Rev., D47:
4392–4420, 1993

within effective field theory methods in 43, appears at relative 1.5PN

43 S. Foffa and R. Sturani. Tail terms
in gravitational radiation reaction via
effective field theory. Phys. Rev. D, 87:
044056, 2013a

order and it is due to the diagram in fig. 13. The contribution to
the effective action can be obtained by considering the contribution
respectively from the σ2ψ, σφA, σφ2, A2φ, Aφ2, φ3 vertices, which give
the effective action contribution
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iSe f f | f ig. 12 = −i
M

16Λ4

∫ dω

2π

(
Q−ij(ω) Q+kl(−ω) + I+ij(−ω) I−kl(ω)

)
∫ ddk

(2π)d
ddq

(2π)d
1

k2 − (ω− ia)2
1

(k + q)2 − (ω− ia)2
1

q2{
−1

8
ω6
(

δikδjl + δilδjk −
2

d− 2
δijδkl

)
+

1
2

ω4
(

qiqkδjl

)
+

1
2cd

ω2

(
−

k2
0qiqj

d− 2
δkl − qiqjkkkl − 2kiqjkkql − 3qiqjqkkl − qiqjqkql

)
1
2

ω
[
kik jqkql − qik jkkql + δik

(
k jklk

2 + k jql(kq) + k2k jql + kqk jkl

)]
+

1
2cd

ω

(
2qik jqkkl − kik jqkql + qik jqkql − k2

0δkl
qiqj

d− 2

)
− 1

2cd
ω
[
kik jkkkl + kik jqkql + 2kik jkkql+

ω2

d− 2

(
δijkkkl + δklkik j + δijqkql + 2δijkkql +

ω

d− 2
δijδkl

)]}
.

(182)

where we have been careful to work in generic d spatial dimensions:
this diagram has a logarithmic divergence in d = 3, which is cured by
performing the computation in generic d dimension. In order to isolate
the cause of the divergence, let us focus on the first line of eq. (182)
within the curly bracket, which is the simplest integral to perform, has
it boils down to integrate the two propagators of the previous line.
After using (see eq.(8-7) of 44) 44 C. Itzinkinson and J. B. Zuber. Quan-

tum field theory. Mac Graw-Hill Interna-
tional Book Company, 1980

∫
k

1[
k2 −ω2

1
]2a

1[
(k + q)2 −ω2

2
]2b =

1
(4π)d/2

Γ(a + b− d/2)
Γ(a)Γ(b)

×
∫ 1

0
dxxa−1(1− x)b−1

[
x(1− x)q2 − xω2

1 − (1− x)ω2
2

]d/2−a−b
(183)

and the identity∫ 1

0
xa(1− x)b =

Γ(1 + a)Γ(1 + b)
Γ(2 + a + b)

, (184)

we get a term proportional to

∫
q

1
q2

[
q2 − (ω + iε)2

x(1− x)

]d/2−2

(185)

which diverges logarithmically as q → ∞ for d = 3. Performing the
full computation, whose details can be found in 45, one obtains 45 S. Foffa and R. Sturani. Tail terms

in gravitational radiation reaction via
effective field theory. Phys. Rev. D, 87:
044056, 2013aSe f f | f ig.13 = −1

5
G2

N M
∫ ∞

−∞

dω

2π
ω6
(

1
d− 3

− 41
30

+ iπ − log π + γ + log(ω2/µ2)
)
×[

Qij−(ω)Qij+(−ω) + Qij−(−ω)Qij+(ω)
]

.
(186)
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Note the appearance of the arbitrary scale µ (with dimension of
inverse-length) because in generic d dimensions we have Λ−2 =
32πGNµ3−d, with µ setting the scale of the d-dimensional Newton’s
constant.

Let us look at the physical process we are considering in order to
interpret this result: a GW is emitted from the quadrupole, scattered
by the curavture and absorbed by the binary itself. In the limit of very
large q, i.e. when the scattering occurs arbitrarily close to the binary
system, this amplitude diverges. We cannot trust our effective theory
arbitrarily close to the source, where the system cannot be described
as a single object with a quadrupole, but we have to match with the
fundamental theory of a binary system. The finite numbers we get
with the result are then menaingless, as they are obtained by pushing
our effective theory farther than it can actually be trusted. However
the logarithmic terms is physical. By cutting the q integral at any finite
scale q0, we would have obtained a term log(ω/q0), which would tell
that integrating out gravitational interactions up to an arbitrary finite
scale, will introduce a logarithmic scaling of the result. Of course it
does not make sense that a physical result depends on an arbitrary
scale, indeed shifting µ to a new value µ′ would change the unphsyical
finite terms in eq. (186) by a finite amount proportional to log(µ′/µ).
How to make physical sense out of this result? The source of the
Newtonian potential has a logarthmic dependence of the scale µ: it
changes if we probe it at different distances, because of the “cloud” of
GW which is continously emitted and absorbed by the binary systems,
thorugh their quadrupole coupling to the source.

It is possible to derive the correct finite terms to complete the result
by using the correct theory to describe the physics very close to the
bynary system, which at short distances cannot be treated as a point of
zero size, but rather as a binary system with size 0 < r � λr/v.

We note the presence of the logarithmic term which is non-analytic
in ω-space and non-local (but causal) in direct space: after integrating
out a mass-less propagating degree of freedom the effective action is
not expected to be local 46. 46 T. Appelquist and J. Carazzone.

Infrared singularities and massive fields.
Phys. Rev. D, 11:2856, 1975

In order to make sense of the result (186) we have first to regularize
it, which can be done by adding a local counter term to the action (157)
given by Mct defined by

Mct = −
2G2

N
5

M
(

1
ε

+ γ− log π

)
Q−ijQ

(6)
+ij . (187)

The combination of the bare monopole mass term M in eq.(157)
plus the above Mct give the mass which is the measured parameter.
However, this is not the full story, as we still have to make sense of the
logarithm appearing in eq.(186).
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The scale µ appearing in the logarithm is arbitrary, but the presence
of the logarithm is indeed physical: the way to avoid an un-physical
dependence on µ of the physical effective action is to assume that M is
µ dependent, that is the monopole mass of the binary system depends
on the scale at which we are probing it, see ex. 31 for a thorough way
to derive how the mass of the binary system is affected by the GW
emission.

According to the standard renormalization procedure, one can
define a renormalized mass M(R)(µ) for the monopole term in the
action (157), depending on the arbitrary scale µ in such a way that
physical quantities (like the force derived from the effective action of
the composite system) will be µ-independent. The force looks like

δẍAi(t)|log = −8
5

xaj(t)G2
N M

∫ t

−∞
dt′ Q(7)

ij (t′) log
[
(t− t′)µ

]
, (188)

and it can be separated into a t-dependet and a t-independent part,
with the t-independent part being:

µ
dδẍAi(t)

dµ
=

8
5

xaj(t)G2
N M

∫ t

−∞
dt′ Q(7)

ij (t′) =
8
5

xaj(t)G2
N MQ(6)(t) .(189)

We can see how this effect gives a logarithmic shift δM to the monopole
mass:

dδM
dt

= −∑
A

mAδẍAi ẋAi . (190)

Substituting eq. (188) into eq. (190) and using the leading order
quadrupole moment expression in eq. (173) allows to turn the right
hand side of eq. (190) into a total time derivative, enabling to identify
the logarithmic mass shift as 47 47 L. Blanchet, S. L. Detweiler, A. Le

Tiec, and B. F. Whiting. High-order
post-newtonian fit of the gravitational
self-force for circular orbits in the
schwarzschild geometry. Phys. Rev., D81,
2010

µ
dδM(R)

dµ
= −

2G2
N M
5

(
2Q(5)

ij Q(1)
ij − 2Q(4)

ij Q(2)
ij + Q(3)

ij Q(3)
ij

)
. (191)

This classical renormalization of the mass monopole term (which
can be identified with the Bondi mass of the binary system, that does
not include the energy radiated to infinity) is due to the fact that the
emitted physical (not virtual!) radiation is scattered by the curved space
and then absorbed, hence observers at different distance from the
source would not agree on the value of the mass.

The ultraviolet nature of the divergence points to the incomplete-
ness of the effective theory in terms of multipole moments: the terms
analytic in ω in eq. (186) are sensitive to the short distance physics and
their actual value should be obtained by going to the theory at orbital
radius.
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Emitted flux

We have now shown how to perform the matching between the theory
of extended objects with multipoles and the theory at the orbital scale.
Taking the action for extended bodies in eq. (157) as a starting point,
the emitted GW-form and the total radiated power can be computed
in terms of the source multipoles by using Feynman diagrams with
one external radiating gravitational particle. Following the same rules
given at the end of the previous chapter for the computation of the
effective energy momentum tensor and the effective potential, we can
write here the effective action for a composite particle described by
the action (157). At leading order the effective action describing the
emission/absorption of a GW described in fig. 14, one does not need
to perform any computation and it can be just read from the action
(157)

iSe f f (M, Q, . . . , σij) ⊃ i
∫

dt Q̈ij
σij

4Λ
(192)

The GW-form can be computed by convolving the appropriate
Green function with the source, which at this order is simply Q̈ij and
it is then possible to derive the actual GW-form

σij(t, x) ⊃ 8πGNΛij;kl

∫
dt′ddx′ GR(t− t′, x− x′)

×
[

Ïkl +
4
3

εlmn J̇mk,n −
1
3

Ïklm,m

]
,

(193)

where Λij,kl is the TT-projector Λij;kl defined in eq. (22).

Figure 14: Diagram representing the
emission of a GW from a quadrupole
source

Analogously to what shown in the previous subsection, we have to
take into account the GW interaction with the space time curvature
produced by the source itself. Including such effect give rise to a tail
effect, accounted by the diagram in fig. 15, which gives a contribution
to the GW amplitude and phase 48 48 L. Blanchet and Gerhard Schaefer.

Gravitational wave tails and binary star
systems. Class.Quant.Grav., 10:2699–2721,
1993; and A. Ross R. A. Porto and I. Z.
Rothstein. Spin induced multipole
moments for the gravitational wave
amplitude from binary inspirals to 2.5
post-newtonian order. JCAP, 1209:028,
2012

σij| f ig. 15 ⊃ Λij;klπMG
∫

k

dω

2π

∫
k

e−iωt+ikxω4

1
k2 − (ω + iε)2

∫
q

q−2

(k + q)2 − (ω + iε)2 Ikl(ω)
(194)



58

Figure 15: Emission of a GW from
a quadrupole source with post-
Minkowskian correction represented by
the scattering off the background curved
by the presence of binary system.

The solution of the above integral is a bit involved, now we just
want to underline that it contains an infra-red divergence for q → 0:
performing first the integral over ω yields a term proportional to∫

q

1
q2

1
2kq

. (195)

The infra-red singularity in the phase of the emitted wave is un-
physical as it can be absorbed in a re-definition of time in eq. (194).
Moreover any experiment, like LIGO and Virgo for instance, can
only probe phase differences (e.g. the GW phase difference between
the instants when the wave enters and exits the experiment sensitive
band) and the un-physical dependencies on the regulator ε and on the
subtraction scale µ drops out of any observable.

The total emitted flux can be computed once the amplitude of the
GW has been evaluated, via the standard formula, see eq. (71)

P =
r2

32πGN

∫
dΩ 〈ḣij ḣij〉 , (196)

but there is actually a shortcut, as the emission energy rate can be
computed directly from the amplitude effective action (192) without
solving for σij. The derivation of the shortcut formula requires the
interpretation of

Ah ≡ k2Qij
εij(k)

4Λ
(197)

as a probability amplitude for emitting a GW with polarization tensor
εij(k, h) (the polarization tensor). The differential probability per unit
of time for emitting a GW over the full phase space volume is indeed
given by

dP(k) =
1

2T
d3k

(2π)3 |k
2Qij(k)εij(k)|2 . (198)
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This formula is usually obtained in quantum mechanics by applying
the optical theorem, whose demonstration is obtained by noting that
|Ah| is obtained by taking the imaginary part of eq. (176), with the
retarded propagator replaced by the Feynman one and using

1
k2 −ω2 + iε

= P
1

k2 −ω2 + iπδ
(

k2 −ω2
)

. (199)

The imaginary part is then interpreted as a probability loss per unit of k
space, as eq. 176 can be rewritten as

Im S′mult| f ig. 12 =
∫

k

dω

2π ∑
h
|Ah(ω, k)|2πδ(k2 −ω2)

=
∫

k

1
2k ∑

h
|Ah(k, k)|2 ,

(200)

where ∑h indicates sum over the two GW elicities. The imaginary part
of the action gives the integrated probability loss, which weighted by
one power of k and divided by the total observation time, gives the
average energy flux. The last missing ingredient to get to the final
formula is the sum over the two polarizations, which depends on k via
the specific form of the Λ projector. For the electric quadrupole term
we have∫ dΩ

4π ∑
h

ε∗ij(k)εkl(k)

=
∫ dΩ

4π

1
2

[
δikδjl + δilδjk − δiknjnl − δjlnink − δilnjnk − δjknink + ninjnknl

−δijδkl + δijnknl + δklninj
]

=
1
5

(
δikδjl + δikδjl −

8
3

δijδkl

)
.

(201)

For the magnetic quadrupole and electric octupole see ex. 36.
After summing over GW polarizations one gets:

P =
1

32Λ2T

∫ ∞

0

k2dk
2π2

[
k4Qij(k)Qkl(−k)

2
5

(
δikδjl −

4
3

δijδkl

)
+

16
9

k4 Jij(k)Jkl(−k)
2
5

(
δikδjl −

4
3

δijδkl

)
+

k6

9
Oijk(k)Olmn(−k)

2
21
(
δilδjmδkn + trace terms

)]
=

2GN
5

∫ ∞

0

dω

2π
ω6
[
|Iij(ω)|2 +

16
9
|Jij(ω)|2 +

5
189

ω2|Iijk(ω)|2 + . . .
]

(202)

which, once averaged over time, recovers at the lowest order the
standard Einstein quadrupole formula plus magnetic quadrupole and
electric octupole contributions

P =
GN
5
〈
...
Q

2
ij〉+

16GN
45
〈
...
J ij〉+

GN
189
〈
....
O ijk〉 (203)
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where we have used that

∫ ∞

0

dω

2π
|Ã(ω)|2 =

1
2

∫ ∞

∞
dtA2(t) .

There are however corrections to this result for any given multi-
pole, due to the scattering of the GW off the curved space-time
because of the presence of the static potential due to the presence
of the massive binary system. The first of such corrections scale as

GN M
∫

(d4k 1
k

2)2δ3(k) ∼ GN Mk ∼ v3 (for radiation k ∼ v/r), that is a
1.5PN correction with respect to the leading order. The tail amplitude
is described by the diagram in fig. 15 and it adds up to the leading
order to give a contribution to the flux going as

∣∣∣∣Ah|v3

Ah|v0

∣∣∣∣2 = 1 + 2πGN Mω + O(v6) . (204)

Finally one could consider the scattering of the emitted GW wave
off another GW, as in fig. 16. This process is known as non-linear
memory effect, it represents a 2.5PN correction with respect to the
leading emission amplitude 49 and it has not yet been computed 49 D. Christodoulou. Nonlinear nature

of gravitation and gravitational wave
experiments. Phys.Rev.Lett., 67:1486–1489,
1991. doi: 10.1103/PhysRevLett.67.1486;
Luc Blanchet and Thibault Damour.
Hereditary effects in gravitational
radiation. Phys.Rev., D46:4304–4319, 1992.
doi: 10.1103/PhysRevD.46.4304; and
Luc Blanchet. Gravitational wave tails of
tails. Class.Quant.Grav., 15:113–141, 1998.
doi: 10.1088/0264-9381/15/1/009

within the effective field theory formalism.
Combined tail and memory effects enter at 4PN order in the

emitted radiation, i.e. double scattering of the emitted radiation
off the background curvature and off another GW. The divergences
describing such process have been analyzed in 50, leading to the

50 A. Ross W. D. Goldberger and I. Z.
Rothstein. Black hole mass dynamics
and renormalization group evolution.
arXiv:1211.6095 [hep-th], 2012

original derivation of the mass renormalization described in subsec. .
The renormalization group equations allow a resummation of the
logarithmic term making a non-trivial prediction for the pattern of the
leading UV logarithms appearing at higher orders 51.

51 W. D. Goldberger and A. Ross. Grav-
itational radiative corrections from
effective field theory. Phys. Rev. D, 81:
124015, 2010; and A. Ross W. D. Gold-
berger and I. Z. Rothstein. Black hole
mass dynamics and renormalization
group evolution. arXiv:1211.6095

[hep-th], 2012

Figure 16: Memory diagram: GW
emitted from a source scattered by
another GW before reaching the
observer.
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Hints of data analysis

Using that for a binary system in circular orbit the relevant quadrupole
moment components are

M11 =
µ

2
ω2

GW R2 cos (ωGW t) ,

M12 =
µ

2
ω2

GW R2 sin (ωGW t) ,
(205)

where the reduced mass µ ≡ m1m2/m1 + m2, we have now gathered
all the elements to compute the GW-form, which is

h+ =
1
r

GNµ (2πR fGW)2 F+(ι) cos(Φ(t)) ,

=
4
r

η (GN M)5/3 (π fGW)2/3 F+(ι) cos(Φ(t)
(206)

where the Kepler’s law (ωGW/2)2 = GN M/R3. Note that both h(t)
as increasing amplitude and instantaneous frequency. Its Fourier
transform can be computed via the stationary phase approximation,
see ex. 35 to give

h̃+( f ) =
(

5
24π4/3

)1/2
eΨ( f ) 1

r
η1/2 (GN M)5/6

f 7/6 F+(ι) (207)

Given the noise characteristic of the detector, quantified by the noise
spectral density Sn( f ) defined by the average over noise realiations

〈n( f )n( f ′)〉 ≡ Sn( f )δ( f − f ′) (208)

one can define the Signal-to-Noise Ratio (SNR) of a signal as

SNR2 =
∫

d f
|h( f )|2
Sn( f )

=
∫

d ln f
f |h( f )|2
Sn( f )

(209)

Exercise 27 ***** Multipole decomposition

Derive eq. (161).
Hint: use the trick∫

d3x
(
Tijxk + Tikxj

)
=
∫

d3xTil
(
xjxk

)
,l

to derive, via Ṫ0i = −Til,l , that∫
d3x

(
Tijxk + Tikxj

)
=
∫

d3xṪi0xjxk .

Now use the same trick to derive∫
d3xṪi0xjxk + Ṫj0xkxi + Ṫk0xixj =

∫
d3xT̈00xixjxk .
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Exercise 28 **** Multipole reduction

Derive eq. (161).
Hint: use a trick analog to eq. (150) to derive∫

d3x
[

Tijxk + Tkixj + Tjkxi

]
=

1
2

∫
d3x

[
Ṫi0xjxk + Ṫk0xixj + Ṫk0xixj

]
and then use∫

d3x
[
Tijxk − Tikxj

]
=

∫
d3x

[
Til xj,l xk − Tkl xi,l xj

]
=

∫
d3x

[
Ṫi0xjxk − Tikxj − Ṫk0xixj + Tkjxi

]
=⇒

∫
d3x

[
Tijxk − Tjkxi

]
=

∫
d3x

[
Ṫi0xjxk − Ṫk0xixj

]
=⇒

∫
d3x

[
Tijxk − Tkixj

]
=

∫
d3x

[
Ṫj0xixk − Ṫk0xixj

]
Now combine the 3 equations involving Tijxk to derive the result.

Exercise 29 Velocity quadrupole coupling to the Weyl
tensor

From eq. 158 derive the formulae

Eij =
1
2

σ̈ij

Bij =
1
4

εikl

(
σ̇kj,l − σ̇l j,k

)
valid at linear order in the TT gauge. From the expression of Bij derive
eq. (162).

Hint: express the contraction of the second line of eq. (161) with σij,k

as (
Ṫ0ixjxk + Ṫ0jxixk − 2Ṫ0kxixj

)
=

T0ixjxk

(
δimδkn − δinδkm

)
+ T0jxixk

(
δjmδkn − δjnδkm

)
.

Now substitute δacδbd − δadδbc = εabiεcdi to obtain the last term in
eq. (162).

Exercise 30 ***** Alternative derivation of the Burke-
Thorne potential

Go through eq.( 176) and contract the two Weyl tensor using their
expression in the TT gauge:

R0
i0j0 =

1
2

σ̈
(TT)
ij .

Hint: Remember that the propagator (132) for σ is not the same as the
one for σ(TT), as

σ
(TT)
ij = Λij,klσkl ,

with Λij,kl given by eq.(22).
Exercise 31 ********** Time dependence of total mass of a

binary system
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In order to compute the mass of a binary system in terms of its
binary constituents properties check how the h00 components of the
gravitrational field couple to it. At leading order the diagram we have
the first diagram in fig. 17 where the field φ couple to the monopole
mass. Neglecting the angular momentum (spin) of the composite
object, the next diagram comes from the second and third graphs in
fig. 17. For computing the last diagram it will be useful the expansion
of R0

i0j at linear order in φ and σ, i.e.

R0
i0j =

1
2

σ̈ij − δijφ̈− φij −
1
2

Ai,j −
1
2

Aj,i

+
1
2

φk

(
σik,j + σjk,i − σij,k

)
− 3

2
φ̇σ̇ij − 2φσ̈ij − φ̈σij

+δij
(

Akφ̇k + φk Ȧk
)
− 2Ajφ̇i − 2Aiφ̇j − 2φi Ȧj − 2φj Ȧi −

1
2
(Ai,j + Aj,i)φ̇

+δijφkφk + 2δijφ̇
2 − 3φiφj + 4φφ̈ + O(h3)

and using the “bulk” vertices of ex. 25.
Result: see eq.(8) of 52. 52 A. Ross W. D. Goldberger and I. Z.

Rothstein. Black hole mass dynamics
and renormalization group evolution.
arXiv:1211.6095 [hep-th], 2012M

ijQ ijQ ijQ ijQ

Figure 17: Coupling of gravity to a
binary system at leading order and at
Q2 order.

Exercise 32 *** Scaling of GW emission diagrams

Derive the scaling of the diagram in fig. 14.
Result: dωd3kω2Q̃(ω)H(ω, k).
Derive the scaling of the diagram in fig. 15. Hint: use

• the scaling of the vertex at the GW emission above (divided by Λ)

• the scaling of the GW propagator δ(4)(k)/k2

• the scaling of the Newtonian graviton emission dtd3qMφ(t, q)/Lambda

• the scaling of the φ propagator δ(t)/q2

• the scaling of the σ2φ vertex: dtd3xH(t, x)
∫

dωd3kd3qω2.

Result: the amplitude scales as GN H(ω, k)MQ̃(ω)dωd3kω3, i.e. as
GN Mω ∼ v3 times the above one.

Exercise 33 **** Memory effect
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The amplitude for emission of GWs receives corrections from
the diagram in fig. 16, where GWs are emitted from two different
quadrupole-gravity vertices and then interact together. Adapt the
scaling rules described in ex. 32 to this case, in which circulating
momenta have k0 ∼ k ∼ v/r and the sources emitting the GW
Q̈ ∼ Mv2 ∼ dωω2Q̃(ω).

Result: GN H(ω, k)dωd3kω5Q̃(ω)dωQ̃(ω), i.e. of order v5 with
respect leading order diagram in fig. 14.

Exercise 34 ** Energy from propability amplitude

Check that eq. (198) has the correct dimensions
Exercise 35 ***** Fourier transform of the GW-form

From eq. (206) perform the Fourier integral

h̃+( f ) =
∫

d f h+(t)e2πi f t

to obtain eq. (207).
Hint: the integral can be done using the stationary phase approxi-

mation, i.e.

h̃+( f ) ∝
1
2

∫
e2πi f t−iΦ(t)dt

' 1
2

e2πi f t∗−iΦ(t∗)
∫

e−iΦ̈(t∗)(t−t∗)2/2dt

=
1
2

e2πi f t∗−iΦ(t∗)
(

2π

Φ̈(t∗)

)
e−iπ/4

where t∗ is the solution of 2π f = Φ̇(t∗) and in the last passage the
complext Gaussian integral has been performed. Substituting the
expression for the phase as a function of t∗( f ) as it can be inferred
from eq. (99), one obtains eq. (207).

Exercise 36 ***** Polarization sum

For the magnetic quadrupole, the polarization tensor sum boils down
to:∫ dΩ

4π ∑
h

εimnnnεkpqnqε∗ij(k, h)εkl(k, h)

=
∫ dΩ

4π

nnnq

2

[(
δmpδjl + δmlδjp − δmjδpl

)
+ njnlnmnp

−
(

δjlnmnp + δmpnjnl + δmlnjnp + δjpnmnl − δmjnpnl − δplnmnj

)]
=

1
5

(
δikδjl + δilδjk −

2
3

δijδkl

)
.

(210)

For the octupole the analog sum is given by (symmetrization under
i ↔ j and l ↔ m is understood, however since it is going to multiply
tensors which are symmetric under such exchange, we do not need to
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woeey about that):∫
dΩ4π ∑

h
nknnε∗ij(k, h)εlm(k, h)

=
∫

dΩnmnn

(
δilδjm − ninlδjm − njnmδil +

1
2

ninjnlnm −
1
2

δijδlm +
1
2
(
ninjδlm + nlnmδij

))
=

2
21

[
δilδjmδkn −

1
5

(
δilδjkδmn + δimδlnδjk + δinδlmδjk

)] (211)

Derive from the sums above the relative term in eq. (202).
Exercise 37 *** Derivation of the flux formula in terms of

binary velocity)

Use the leading quadrupole term in eq.(202) to derive the leading
order of the flux formula eq. (3) for circular orbits.

Hint: use eq. (205) and that

v = (GN Mπ fGW)1/3 .
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